How to Write a Technical Paper

Michael Hicks, University of Maryland & Amazon

d C @

How to Write a Great Research Paper

Simon Peyton Jones

Engineering Fellow, Epic
Games

Q@ Cambridge, England

Twitter
© GitHub
M Linkedin

B Email

A @ simon.peytonjones.org

Introduction

This talk offers seven simple, concrete suggestions for how to improve your research papers. You may also find
my talks on how to write a great research proposal and how to give a great research talk useful.

ft

recren HOW 10 Write a Great Research Paper D
Copy link

How to write a great
research paper

Watch on (@ YouTube

* Powerpoint slides of the talk: PDF PPT (you should feel free to repurpose these slides for your own use as
long as you acknowledge ownership)

How to write a great
research paper

Simon Peyton Jones

with amendments/additions by
Mike Hicks, UMD and Amazon

B Microsoft < SPJ used to work here | =

Seven simple, actionable
suggestions

that will make your papers better.

1. Don't walt: write

Writing
papers:
model

Do
research

Writing
Dapers:
(provocative)
model 2

Writing
Dapers:
(provocative)
model 2

DO

research

» Forces us to be clear, focused
» Crystallises what we don't understana
« Opens the way to dialogue with

others: reality check, critique, and
collaboration

Ve

Writing DO

pa pers: research
(provocative)

model

Writing papers is a primary mechanism for
doing research (not just for reporting it)

2. |[dentity your key idea

Your goal:
{0 convey a
useful and
re-usable

idea

» You want to infect the mind of your
reader with , like a virus

 Papers are far more durable than
programs (think Mozart)

The greatest ideas are (literally)

worthless it you keep them to yourselt

Do not be

intimidatead You need to have a fantastic idea before

you can write a paper. (Everyone else
seems to.)

Write a paper, and give a talk, about

any idea, no matter how weedy ana
insignificant it may seem to you

t's a
Drocess

Writing the paper is how you
in the first place
* [t usually turns out to be more

interesting and challenging that it
seemed at first

Writing about it also helps you

 Understand the problem space better

« Better to solve a real problem than to design a
solution looking for one

e Get feedback

Paper + Itis useful to think that you are

" : your reader your idea
WIITING 1S + What you did

teachi fale » Why it's important

e How it works

« Well-written papers contribute more

than just their described results
« Readers

The ides » Your paper should have just one
‘ning”:
» You may not know exactly what the

ping is when you start writing; but you
dea: must know when you finish

» | you have lots of ideas, write lots of
papers

A re-usable insight,
useful to the reader

Can you
hear the

Ilpingll?

W

« Many papers contain good ideas, but
do not distil what they are.

« Make certain that the reader is in no
doubt what the idea is. Be 100%

explicit:

« “The main idea of this paper is...”
« “In this section we present the main contributions

of the paper”

Thanks to Joe Touch for “one ping”

3. Tell a story

Your Imagine you are explaining at a whiteboard

narrative
flow

» Here is a problem
* [t's an interesting problem
« |t's an unsolved problem

« My idea works (details, data)

« Here's how my idea compares to
other people’s approaches

Define your « A whiteboard discussion is for a particular
person. When writing a paper, your

reader readers are not in front of you. So: What

can you assume they know?

« Technical methods and results

 Preconceptions/attitude
e Interests

 As a proxy, consider the intended venue
« Who is on the PC? What work do they do?

« What are the topics and assumptions of papers
previously published here?

Structure
(conference

paper)

 Title (1000 readers)

« Abstract (4 sentences, 100 readers)
« Introduction (1 page, 100 readers)
 The problem (1 page, 10 readers)

« My idea (2 pages, 10 readers)

 The details (5 pages, 3 readers)
 Related work (1-2 pages, 10 readers)
« Conclusions and further work (0.5

pages, 100 readers)

4. Nail your contributions
to the mast

The '

What is the broader context?

iﬂtI’OdUCtiOﬂ What is the particular problem?
(1 page)

- Why is it interesting?

What is new? (novelty)
Why is it useful? (features of your solution)
How do you know? (evaluation)

Assume reader is general attendee of
target conference

Describe
the problem

1 Introduction

There are two basic ways to implement function application in
a higher-order language, when the function is unknown: the
push/enter model or the eval/upply model [11]. To illustrate the
difference, consider the higher-order function zipWith, which zips
together two lists, using a function k to combine corresponding list
elements:

zipWith :: (a->b->c) -> [a] -> [b] -> [c]
zipWith k [] [] =[]
zipWith k (x:xs) (y:ys) = k x y : zipWith xs ys

Here k is an unknown function, passed as an argument; global flow
analysis aside, the compiler does not know what function k is bound
to. How should the compiler deal with the call k x y in the body
of zipWith? It can’t blithely apply k to two arguments, because
k might in reality take just one argument and compute for a while
before returning a function that consumes the next argument; or k
might take three arguments, so that the result of the zipWith is a
list of functions.

Use an
example to

introduce
the problem

Molenills
NOt
mountains

Example: “Computer programs often have bugs. Itis
very important to eliminate these bugs [1,2]. Many
researchers have tried [3,4,5,6]. It really is very
important’”

Yawn!

Example: “Consider this program, which has an
interesting bug. <brief description>. We will show
an automatic technique for identifying and removing
such bugs”

Cool!

State your . Write the list of contributions first
contributions ’

- the paper substantiates
the claims you have made

» Reader thinks “‘gosh, if they can really
deliver this, that's be exciting; I'd better
read on”

State your
contributions

Do not leave the
reader to guess what
your contributions are!

Which of the two is best in practice? The trouble is that the eval-
uation model has a pervasive effect on the implementation, so it is
too much work to implement both and pick the best. Historically,
compilers for strict languages (using call-by-value) have tended to
use eval/apply, while those for lazy languages (using call-by-need)
have often used push/enter, but this is 90% historical accident —ei-
ther approach will work in both settings. In practice, implementors
choose one of the two approaches based on a qualitative assessment
of the trade-offs. In this paper we put the choice on a firmer basis:

e We explain precisely what the two models are, in a common
notational framework (Section 4). Surprisingly, this has not
been done before.

e The choice of evaluation model affects many other design
choices in subtle but pervasive ways. We identify and dis-
cuss these effects in Sections 5 and 6, and contrast them in
Section 7. There are lots of nitty-gritty details here, for which
we make no apology — they were far from obvious to us, and
articulating these details is one of our main contributions.

In terms of its impact on compiler and run-time system com-
plexity, eval/apply seems decisively superior, principally be-
cause push/enter requires a stack like no other: stack-walking

Bulleted list
of

contributions

Contributions

should be
refutable

We describe the WizWoz
system. It is really cool.

We study its properties

We have used WizWoz in
practice

We give the syntax and
semantics of a language that
supports concurrent processes
(Section 3). Its innovative
features are...

We prove that the type system is
sound, and that type checking is
decidable (Section 4)

We have built a GUI toolkit in
WizWoz, and used it to
implement a text editor (Section
5). The result is half the length of
the Java version.

Fvidence » Your introduction makes claims
» The body of the paper provides

o Check each claim in the introduction,
identify the evidence, and forward-
reference it from the claim

« "Evidence” can be: analysis and
comparison, theorems, measurements,
case studies

No “rest of * Not

"The rest of this paper is structured as follows. Section

J[I”HS pa per 2 introducﬂes the problem. Section 3 ...Finally, Section 8
concludes”.

. 1/

S... » Instead,

. The
introduction (including the contributions)
should survey the whole paper, and
therefore forward reference every
important part.

A \Qnger . The introduction can be viewed a

: : capsule of the entire paper
|ntr0d UCUOH? « The context, the problem, your idea, and its

evaluation

» You could shorten or avoid the problem
and idea sections and have a longer

INtro

e Make part of the « Title (1000 readers)

« Abstract (4 sentences, 100 readers)

intro (subsections) « Introduction (1 page, 100 readers)

 But beware of taking +—Fhe-problem-(+-page10-readers)—
too long to get to —My-idea{2-pages10-readers)——
the point' reader will The details (5 pages, 3 readers)

« Related work (1-2 pages, 10 readers)

« Conclusions and further work (0.5
pages, 100 readers)

get frustrated

The abstract
(4 sentences)

Should be brief, not assume too
much, and highlight items of
importance

Four sentences [Kent Beck]
State the problem
Say why it's an interesting problem
Say what your solution achieves
Say what follows from your solution

| usually write the abstract second-
to-last

Last is the conclusions!

Example

Many papers are badly written and
hard to understand

This Is a pity, because their gooad
ideas may go unappreciated

Following simple guidelines can
dramatically improve the quality of
your papers

Your work will be used more, and the

feedback you get from others will in
turn improve your research

De\/]atmg » The abstract can be longer if there is a
purpose relevant to your reader, e.g.,

frOm the « Expand on the problem context
|d Y ‘ ° Briejc recap of prior results
« Indicate several results (e.g., one sentence per
result)

« Remember, the goal is to get the
reader to read the introduction ...

Finding your The abstract has a very specific

(peer)
reviewers

puUrpose in the peer review process:

 Reviewers will read abstracts to bid on
papers to review; how to signal the
right reviewers to select your paper?
« Problem domain

« Technigues used
e Results achieved

5. Related work: later

Structure

« Abstract (4 sentences)
« Introduction (1 page)

 The problem (1 page)

« My idea (2 pages)
 The details (5 pages)

« Conclusions and further

work (0.5 pages)

Structure

« Abstract (4 sentences)
« Introduction (1 page)
 The problem (1 page)
« My idea (2 pages)
 The details (5 pages)

« Conclusions and further

work (0.5 pages)

No related
work yet!

Your reader Your idea

We adopt the notion of transaction from Brown [1], as
modified for distributed systems by White [2], using the
four-phase interpolation algorithm of Green [3]. Our work
differs from White in our advanced revocation protocal,
which deals with the case of priority inversion as described
by Yellow [4].

No related
work yet!

- the reader knows nothing
about the problem yet; so your (highly
compressed) description of various
technical tradeoftfs is absolutely
incomprehensible

- describing alternative
approaches gets between the reader
and your idea

\/\/hat ”C the » Your idea could be derailed by a reader’s
preconception that the problem is

problem s + Solvec

 Impossible
WeH « Just like someone else’s approach they know
known? about

 Presenting related work after the
introduction can mitigate these problems

» S0 refute these points with a forward
reference the related work section

 People expect you to compare to related work,
so they will give you the benefit of the doubt

Writing
Relatec To make my work look good, | have to
\Work: make other people’s work look bad.

Give Credit

The truth: . Warmly acknowledge people who

credit is not
ike money

have helped you

« Be generous to the competition.

“In his inspiring paper [Foo98] Foogle shows.... We
develop his foundation in the following ways..”

« Acknowledge weaknesses in your
approach

Giving credit to others does not diminish

the credit you get from your paper

Blg piCtU re: « Strive to be precise in your comparisons

: » Best: use terminology you have used to
advanci ale explain your approach to explain related

knowledge

approaches. Crystallize the differences.
 Helps readers, helps you

» Poor: focus on superficial differences
between yours and related approaches
* Inhibits knowledge of the true state of the art

« Discussion of related work should be a
contribution in its own right

0. Put your readers first

Structure . Abstract (4 sentences)
» Introduction (1 page)

» Related work (1-2 pages)

« Conclusions and further work (0.5
pages)

3. The idea

Consider a bifircuated semi-lattice D, over a hyper-modulated
signature S. Suppose pi is an element of D. Then we know
for every such pi there is an epi-modulus j, such that p;< p;.

Structure

 Sounds impressive...obut

 Sends readers to sleep, and/or makes
them feel stupia

Presenting
the idea

» Explain it as if you were speaking to

someone using a whiteboard
, NOt
secondary

« Once your reader has the intuition, she

can follow the details (but not vice
Versa)

 Even if she skips the details, she still

takes away something valuable

Conveying

: o ntroduce the problem, and your
the intuition

idea, using and only
then present the general case

« Remember: explain it as it you were
speaking to someone using a
whiteboara

Using
examples

The Simon PJ question:

s there any typewriter
font?

2 Background

To set the scene for this paper, we begin with a brief overview of
the Scrup your boilerplate approach to generic programming. Sup-
pose that we want to write a function that computes the size of an
arbitrary data structure. The basic algorithm is “for each node, add .
the sizes of the children, and add 1 for the node itself”. Here is the Exam p|e I’Ig ht
entire code for gsize:

away

gsize :: Data a => a -> Iat

gsize t = 1 + sum (gmapQ gsize t)
The type for gsize says that it works over any type a, provided a
is a data type — that is, that it is an instance of the class Datal
The definition of gsize refers to the operation gmapQ, which is a
method of the Data class:

class Typeable a => Data a where

...other methods of class Data...
gmapQ :: (forall b. Data b => b -> r) -> a -> [r]

The Understanding an example is an intellectual
Investment

Run ﬂing + Make your examples simple enough to

Example
[Stone]

understand but still convincing
Aim for reuse

First concept

Example of first concept

Next concept

Fxample embellished

Next concept followed by more embellishment ...

Non-ideal approaches to examples

 First concept

« Next concept

« Next concept

« Example of first concept
« Example embellished

« More embellishment

Leaves reader unsure between
concepts

 First concept

« Example of concept
« Next concept

» Different example

« Next concept

Yet another example

Extra effort to understand each
example

Added by mwh, 11/21/07

The details:
evidence

« Your introduction

« The body of the paper provides

o (Check each claim in the introduction,

identify the evidence, and forward-reference
it from the claim

 Evidence can be: analysis and comparison,

theorems, measurements, case studies

General
idea: Claim
then
Fvidence

The should occur
the paper
 Top-down, as opposed to bottom-up,
organization
Fach section should begin with a claim
and/or summary

« "This section proves that the boobaz approach is
sound. To do this ..”

« "This section shows that boobaz performs well
under a typical workload. We gathered ..”

« "Boobaz is distinct from other approaches to X
primarily in that ..”

Same with subsections, even paragraphs

Wrong° . Temptation: present facts, then assess them
. « Like a mystery story: learn the facts of the crime,
Facts then

and then discover who did it!
Conclusions » The problem: you don't want the reader to
guess, you want to tell them what'’s
important! Readers get frustrated without
direction

» Strive to create "mental boxes” by
foreshadowing your argument. Will fill in
these boxes as you go [Harold Stone]

Putting the
reader first

recapitulate your personal
journey of discovery. This route may
be soaked with your blood, but that is
not interesting to the reader.

« Instead, choose the most direct route

to the idea.

/. Listen to your readers

Getting help

 Experts are good
« Non-experts are also very good

 Each reader can only read your paper
for the first time once! So use them

carefully

T you are a reader, be substantive (“l
got lost here” is much more important
than “Jarva is mis-spelt”)

Get your paper read by as many friendly

guinea pigs as possible

Getting
expert help

A good plan: when you think you are

done, send the draft to the
competition saying “could you help me
ensure that | describe your work
fairly?”.

 Often they will respond with helpful

critique (they are interested in the
area)

 They are likely to be your referees

anyway, so getting their comments or
criticism up front is Jolly Good.

_istening

to your Be (truly) grateful for criticism as
‘EVIEWET'S well as praise

This is really, really, really hard

But it's really, really, really, really, really,
really, really, really, really, really important

Listening « Read every criticism as a positive
suggestion for something you could
{0 your explain more clearly

reviewers + DO NOT respond *

« INSTEAD: fix the paper so that X is
apparent even to the stupidest reader.

« Thank them warmly. They have given
up their time for you.

1. Don't wait: write

2. ldentify your key idea
3. Tell a story

4. Nail your contributions
5

0

/

sSummary

. Related work: later
. Put your readers first (examples)
. Listen to your readers

More: www.microsoft.com/research/people/simonpj

Language and Style

Visual + Give strong visual structure to your
Laper using

StFUCtU fis * sections and sub-sections

 bullets

e italics

* |aid-out code

» pictures and diagrams

» Your paper should “look” good
« Fix orphans and widows
 Keep text in the margins

Visual
structure

Info pointer
] Payload

Info table
—> ®——» Entrycode

Object type
Layout info

Type-specific
fields

Figure 3. A heap object

The thiee cases above do not exhaust the possible forms of f. 1t
might also be a THUNK, but we have alicady dealt with that case
(rule THUNK). 1t might be a CON, in which case there cannot be any
pending arguments on the stack, and rules UPDATE ot RET apply.

4.3 The eval/apply model

The last bleck of Figure 2 shows how the eval/apply model deals
with function application. The first three rules all deal with the case
of a FUN applied to some atguments:

e 1f there ate exactly the right number of arguments, we behave
exactly like rule KNOWNCALL, by tail<alling the function.
Rule EXACT s stil | necessary — and indeed has a direct coun-
terpatt in the implementation — because the function might
not be statically known.

e 1f there are too many atguments, rule CALLK pushes a call

remainder of the object is called the puyload, and may consist of
a mixture of pointers and non-pointers. For example, the object
CON(C ay...an) would be represented by an object whose info
pointer represented the constructor C and whose payload is the ar-
guments «| ...dp.

The info table contains:

e Exccutable code for the object. For example, a FUN object
has code for the function body.

e An object-type field, which distinguishes the various kinds of
objects (FUN, PAP,CON cic) from each other.

e Llayout information for garbage collection putposes, which
describes the size and layout of the payload. By “layout™ we
mean which fields contain pointets and which contain non-
pointers, information that is essential for accutate garbage col-
lection.

e Type-specific information, which varies depending on the ob-
ject type. For example, a FUN object contains its anty; a
CON object contains its constructor tag, a small integer that
distinguishes the different constructors of a data type; and so
on.

1n the case of a PAP, the size of the object is not fixed by its info
table; instead, its size is stored in the object itself. The layout of its
fields (e.g. which are pointers) is described by the (initial segment
of) an atgument-descriptor field in the info table of the FUN object
which is always the first field of a PAP. The other kinds of heap
object all have a size thatis statically fixed by their info table.

A very common opetation is to jump to the entry code for the object,
so GHC uses a slightly-optimised version of the representation in
Figure 3. GHC places the info table at the addresses immediately

Rule of 2 « If you add a subsection to a section,
you should have at least a second one
« Likewise with a paragraph in a subsection

« Otherwise, why bother subdividing?

« When dropping a subsection heading, consider
retitling the section

The BOdy Of « What happens here

a Section
[Stone]

« How this fits (optional)
e The results
e [ransition

In this section ...

This section continues the derivation by ...

Thus far, the discussion has ... Here, ...

Use the
active volce

The passive voice is
"respectable” but it
deadens your paper.
Avoid it at all costs.

It can be seen that...

34 tests were run

These properties were thought
desirable

't might be thought that this
would be a type error

We can see that...
We ran 34 tests

We wanted to retain these
properties

You might think this would be a type
error

Use simple,
direct
language

The object under study was
displaced horizontally

On an annual basis
Endeavour to ascertain
It could be considered that the

speed of storage reclamation left
something to be desired

The ball moved sideways

Yearly
Find out

The garbage collector was really
slow

Twice told, - Clarify tricky concepts by describing

: them twice
d HC]Ce iS nt Picture with text
\/\/ayS [Stone] « Text with equation

« Methodology with example
fix) = 2, w() xB(@)

That is, [(x) (s a weighted sum of Bs.

References

References are annotations, not nouns

« Sentence should still make sense if you remove
the references

Castelli and Brown [3] showed that ...
« Not [3] showed that ...

Some prior systems are unsound [3,4].
« Not The systems presented in [3,4] are unsound.

acmart.cls provides \citet{}
« When you want to use a reference as a noun

' e The first thing readers will see of yvour
iNnaaple >LINING Y

: paper is its title

T|ﬂe « Should motivate them to read the abstract

« How will readers find your paper in the
first place?

* Internet search — title should have the right
keywords!

« Paper-watch service (arXiv, Google Scholar, ...) —
topic should be evident from title (and metadata)

