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Static program analysis is fascinating

Functional equivalance
Two programs are functionally equivalent if they compute the same output
for every input.

However, such programs can differ in non-functional properties.
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Static program analysis is fascinating

Exercise: compare the following two programs for differences.

if (bit) { Z = X; }
else { Z = Y; }

vs.

Z = X * bit + Y * (1 - bit);

Assume standard semantics, variables X,Y,Z ∈ Z, and bit ∈ {0, 1}.
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Bad news! There exists no general method for analyzing interesting

semantic properties; i.e., every non-trivial semantic property is undecidable.
1

Good news! We can always build increasingly better ap-
proximative techniques.

This is colloquially called the “full employment theorem for

static program analysis designers”
2

1
Rice, “Classes of recursively enumerable sets and their decision problems”.

2
Møller and Schwartzbach, Static Program Analysis, p. 4.
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Techniques of static program analysis

There are many syntactical techniques for reasoning about programs:
data-flow analysis, type systems, abstract interpretation, etc.

The “toolbox” of this talk comes from implicit computational complexity.
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Agenda

By the end of this talk, you should have learned three things about implicit
computational complexity:

1. What is it?

2. How does it work?

3. What is it good for?
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Classic Complexity Theory

Characterizes complexity classes in terms of machine models.

Programs are classified into classes based on resource usage.

Resources of interest are typically time, space, etc.
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Very Brief History

Year Description

1966 Cobham–Edmonds’s Thesis: relates P time with feasible functions
34

1992 First implicit characterizations of complexity

– Stephen Bellantoni and Stephen Cook: safe recursion
5

– Daniel Leivant: stratified recurrence
6

3
Cobham, “The Intrinsic Computational Difficulty of Functions”.

4
Edmonds, “Paths, trees, and flowers”.

5
Bellantoni and Cook, “A new recursion-theoretic characterization of the polytime functions”.

6
Leivant, “Stratified functional programs and computational complexity”.
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Implicit Computational Complexity (ICC)

Let L be a programming language, C a complexity class, and [[p]] the
function computed by program p.

Find a restriction R ⊆ L, such that the following equality holds:

{[[p]] ∣ p ∈ R} = C

The variables L, C, and R are the parameters that vary greatly between

different ICC systems.
7

7
Péchoux, “Complexité implicite : bilan et perspectives”.
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Implicit Computational Complexity (ICC)

Programming language C, Java, λ-calculus…

+ restriction type system, syntax structure, data flow…

⇒ complexity class PTIME, EXP, L, PP…

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 9 / 31



Advantages of Implicit Computational Complexity

• Natural characterizations of central complexity results.

• Better understanding of complexity classes.
For example: complexity classes are intrinsic mathematical entities that do not

depend on a particular machine model.

• Quantifies the computational power available in programming
languages by construction.

• Potential to convert complexity-theoretic insights to practical program
analyses.
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Restricting languages is a bit controversial
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Programming languages with ((((((((
restrictions guarantees

(safe) Rust
no memory errors, no data races, controlled aliasing

Total functional programming
programs are provably terminating

Theorem-proving languages
require termination, but enable constructing formal proofs

Synchronous languages
for real-time reactive systems with response-time and memory usage
restrictions
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The challenge with Implicit Computational Complexity

Despite the many compelling features, ICC has remained largely a
theoretical novelty.

The practical power, limitations, and utilities of ICC are not well-understood.

This influences the continued development of ICC theories and limits
exposure of ICC ideas and techniques in broader research communities.
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Hypothesis

Implicit computational complexity offers applied utilities when lifted

outside the theoretical domain.
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Questions

• Can we develop practical resource analyses based on these theories?

• Is the theory correct: can we prove formally its soundness?

• If theories can be automated, what are their use cases?

• Can the theories be used to track other semantic properties?
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The flow calculus of mwp-bounds
8

Data flow analysis for certifying that final values computed by a
deterministic imperative program will be bounded by polynomials in the
program’s inputs.

8
Jones and Kristiansen, “A flow calculus of mwp-bounds for complexity analysis”.
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The goal is to discover a polynomially bounded data-flow relation for command C,
between its variables’ initial values xi and final values x

′
i: [[C]](xi ↝ x

′
i).

C′ ≡ X1 := X2 + X3;
X1 := X1 + X1

x
′
1 ≤ 2x2 + 2x3

x
′
2 ≤ x2

x
′
3 ≤ x3

PASS

C′′ ≡ X1 := 1;
loop X2 {X1 := X1 + X1}

x
′
1 ≤ 2x2

x
′
2 ≤ x2

FAIL
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Mechanics of the flow calculus

Imperative Language

(var) X1 ∣ X2 ∣ X3 ∣… (aexp) e + e ∣ e * e (bexp) e = e ∣ e < e ∣…
(com) skip ∣ X := e ∣ C;C ∣ if b then C else C ∣ loop X {C} ∣ while b do {C}
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Mechanics of the flow calculus

Flow coefficients (dependencies)

0 : no dependency m : maximal w : weak polynomial p : polynomial

weaker…stronger
−−−−−−−−−−⟶
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Mechanics of the flow calculus

Inference rules

E1
⊢ Xi ∶ {m

i }
⊢ Xi ∶ V1 ⊢ Xj ∶ V2

E3
⊢ Xi⋆ Xj ∶ pV1 ⊕ V2

⊢ e ∶ V A

⊢ Xj = e ∶ 1
j
←− V

…
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Mechanics of the flow calculus

mwp-bound

max(x⃗, poly1(y⃗)) + poly2(z⃗)
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Mechanics of the flow calculus

1. Imperative programming language [input]

2. Coefficients (dependencies)

3. Inference rules

4. mwp-bounds [output]
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Derivation success

C′ ≡ X1 := X2 + X3;
X1 := X1 + X1

X2 X1 X3
w w

p p
m m

E1
⊢ X2 ∶ ( 0

m
0
)

E1
⊢ X3 ∶ ( 0

0
m
)
E3

⊢ X2+X3 ∶ ( 0
p
m
)

A
⊢ X1:=X2+X3 ∶ ( 0 0 0

p m 0
m 0 m

)
⋮

A
⊢ X1:=X1+X1 ∶ ( p 0 0

0 m 0
0 0 m

)
⋮

C

⊢ X1:=X2+X3;X1:=X1+X1 ∶ (
0 0 0
p m 0
p 0 m

)

x
′
1 ≤ x2 + x3 ∧ x

′
2 ≤ x2 ∧ x

′
3 ≤ x3
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Derivation failure

C′′ ≡ X1 := 1;
loop X2 {X1 := X1 + X1}

X2

X1

?

m

E1
⊢ X1:=1 ∶ (m

0 )
⋮

A
⊢ X1:=X1+X1 ∶ ( p 0

0 m )
⋮

⊢ C ∶ M
∀i, M

∗
ii = m L

⊢ loop X`{C} ∶ M
∗ ⊕ {p

`→ j ∣ ∃i, M
∗
ij = p}
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Application challenges

All works nicely on paper.

But we have implementation problems:

• How to handle nondeterminism?

• How to handle derivation failure?
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Handling non-determinism

Idea: track derivation choices as functions from choices to coefficients.

▷ If a coefficient depends on a choice represent it as 3 elements.

▷ If independent, represented as a single element.

We track not only dependencies, but a history of derivation choices.
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FIX: Internalize non-determinism

X1 = X2 + X3

↓

��
���(m 0 0

m m 0
p 0 m

)
��

���(m 0 0
p m 0
m 0 m

)
��

���(m 0 0
w m 0
w 0 m

)

↓

(
m 0 0

m.δ(0,0)+p.δ(1,0)+w.δ(2,0) m 0
p.δ(0,0)+m.δ(1,0)+w.δ(2,0) 0 m

)
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The failure problem

C ≡ while(b){X1:=X2+X2}

Derivation of X1:=X2+X2 yields two matrices: ( 0 0
p m ) and ( 0 0

w m )

⊢ C ∶ M
∀i, M

∗
ii = m and ∀i, j, M

∗
ij ≠ p W

⊢ while b do {C} ∶ M
∗

⇒ derivation ( 0 0
p m ) fails but derivation ( 0 0

w m ) succeeds.
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FIX: New way to represent failure

Idea: We introduce∞ flow to represent non-polynomial dependencies.

{0, m, w, p,∞}

Every derivation can be completed without restarts.

Captures localized information about where failure occurs.

Once failure is introduced, it cannot be erased: ∞×∞ 0 = ∞.

C ≡ while(b){X1:=X2+X2} ( m+∞δ(0,0)+∞δ(1,0) 0
∞δ(0,0)+∞δ(1,0)+wδ(2,0) m )
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Implementation: pymwp static analyzer
9

A prototype analyzer for a subset of C99.

Source code and demo: statycc.github.io/pymwp/demo

Install: pip install pymwp

Usage

pymwp path/to/file.c [ARGS]

9
Aubert et al., “pymwp: A Static Analyzer Determining Polynomial Growth Bounds”.
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The enhanced flow calculus

Q: Can we develop practical resource analyses based on these theories?
A: Yes, eventually.

• All derivations captured deterministically in one (complex) matrix.

• The mwp-bounds are “lost” (this has been resolved since).

• The enhanced system gives more information and captures a larger
class of programs than the original system.

• Many open problems remain: formalization, increasing precision,
analyzing lower bounds, …
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From Theory to Applications

Implicit computational complexity provides orthogonal techniques for
automatic resource analysis.

Attempts to implement and apply the theories expose their limitations.

Those investigations lead to improvements in the theories.
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Implicit Complexity in Program Analysis

We can implement program analyses from two directions:

Top-down: reducing a rich language to a restricted subset.

Bottom-up: reasoning about programs before any programs exist
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Extended Utilities

The techniques developed in implicit computational complexity can be
adjusted to tracking other semantic properties.

We have investigated applications in parallelizing transformations
10
, and

security (ongoing).

These investigations highlight the flexibility of ICC techniques.

10
Aubert et al., “Distributing and Parallelizing Non-canonical Loops”.

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 30 / 31



Take-home Messages

Implicit computational complexity…

• Gives us a rich toolbox of techniques for resource analysis.

• Can be used beyond resources, to track other non-functional properties.

• Should be viewed in broader sense than the name implies.
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Nondeterministic Inference Rules

E1
⊢ Xi ∶ {m

i }
⊢ C1 ∶ M1 ⊢ C2 ∶ M2 I

⊢ if b then C1 else C2 ∶ M1 ⊕ M2

E2
⊢ e ∶ {w

i ∣ Xi ∈ var(e)}
⊢ Xi ∶ V1 ⊢ Xj ∶ V2

E3
⊢ Xi+Xj ∶ pV1 ⊕ V2

⊢ Xi ∶ V1 ⊢ Xj ∶ V2
E4

⊢ Xi+Xj ∶ V1 ⊕ pV2

⊢ e ∶ V
A

⊢ Xj = e ∶ 1
j
←− V

⊢ C ∶ M
∀i, M

∗
ii = m L

⊢ loop X` {C} ∶ M
∗ ⊕ {p

`
→ j ∣ ∃i, M

∗
ij = p}

⊢ C1 ∶ M1 ⊢ C2 ∶ M2 C
⊢ C1; C2 ∶ M1 ⊗ M2

⊢ C ∶ M
∀i, M

∗
ii = m and ∀i, j, M

∗
ij ≠ p W

⊢ while b do {C} ∶ M
∗



Deterministic Inference Rules

⋆ ∈ {+,−} E
A

⊢ Xi⋆Xj ∶ (0 ↦ {m

i
,p
j
})⊕ (1 ↦ {p

i
,m
j
})⊕ (2 ↦ {w

i
,w
j
})

E
M

⊢ Xi*Xj ∶ {w
i ,wj }

E
S

⊢ Xi ∶ {m

i
}

⊢ e ∶ V A

⊢ Xj = e ∶ 1
j
←− V

⊢ C1 ∶ M1 ⊢ C2 ∶ M2 C
⊢ C1; C2 ∶ M1 ⊗ M2

⊢ C1 ∶ M1 ⊢ C2 ∶ M2 I
⊢ if b then C1 else C2 ∶ M1 ⊕ M2

⊢ C ∶ M L
∞

⊢ loop Xl {C} ∶ M
∗ ⊕ {∞j → j ∣ M

∗
jj ≠ m}⊕ {p

l
→ j ∣ ∃i, M

∗
ij = p}

⊢ C ∶ M W
∞

⊢ while b do {C} ∶ M
∗ ⊕ {∞j → j ∣ M

∗
jj ≠ m}⊕ {∞i → j ∣ M

∗
ij = p}

F

⊢ Xi = F(X1,⋯, Xn) ∶ 1 i
←− ((M1

f )δ(0, c)⊕ ⋅ ⋅ ⋅ ⊕ (Mk
f )δ(0, c)δ(k, c))


