
Fresh Perspectives on
Implicit Computational Complexity

Neea Rusch ⋅ Augusta University

3 June 2025 @ Uppsala University

Static program analysis is fascinating

Functional equivalance
Two programs are functionally equivalent if they compute the same output
for every input.

However, such programs can differ in non-functional properties.

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 1 / 31

Static program analysis is fascinating

Exercise: compare the following two programs for differences.

if (bit) { Z = X; }
else { Z = Y; }

vs.

Z = X * bit + Y * (1 - bit);

Assume standard semantics, variables X,Y,Z ∈ Z, and bit ∈ {0, 1}.

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 2 / 31

Bad news! There exists no general method for analyzing interesting

semantic properties; i.e., every non-trivial semantic property is undecidable.
1

Good news! We can always build increasingly better ap-
proximative techniques.

This is colloquially called the “full employment theorem for

static program analysis designers”
2

1
Rice, “Classes of recursively enumerable sets and their decision problems”.

2
Møller and Schwartzbach, Static Program Analysis, p. 4.

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 3 / 31

Techniques of static program analysis

There are many syntactical techniques for reasoning about programs:
data-flow analysis, type systems, abstract interpretation, etc.

The “toolbox” of this talk comes from implicit computational complexity.

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 4 / 31

Agenda

By the end of this talk, you should have learned three things about implicit
computational complexity:

1. What is it?

2. How does it work?

3. What is it good for?

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 5 / 31

Classic Complexity Theory

Characterizes complexity classes in terms of machine models.

Programs are classified into classes based on resource usage.

Resources of interest are typically time, space, etc.

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 6 / 31

Very Brief History

Year Description

1966 Cobham–Edmonds’s Thesis: relates P time with feasible functions
34

1992 First implicit characterizations of complexity

– Stephen Bellantoni and Stephen Cook: safe recursion
5

– Daniel Leivant: stratified recurrence
6

3
Cobham, “The Intrinsic Computational Difficulty of Functions”.

4
Edmonds, “Paths, trees, and flowers”.

5
Bellantoni and Cook, “A new recursion-theoretic characterization of the polytime functions”.

6
Leivant, “Stratified functional programs and computational complexity”.

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 7 / 31

Implicit Computational Complexity (ICC)

Let L be a programming language, C a complexity class, and [[p]] the
function computed by program p.

Find a restriction R ⊆ L, such that the following equality holds:

{[[p]] ∣ p ∈ R} = C

The variables L, C, and R are the parameters that vary greatly between

different ICC systems.
7

7
Péchoux, “Complexité implicite : bilan et perspectives”.

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 8 / 31

Implicit Computational Complexity (ICC)

Programming language C, Java, λ-calculus…

+ restriction type system, syntax structure, data flow…

⇒ complexity class PTIME, EXP, L, PP…

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 9 / 31

Advantages of Implicit Computational Complexity

• Natural characterizations of central complexity results.

• Better understanding of complexity classes.
For example: complexity classes are intrinsic mathematical entities that do not

depend on a particular machine model.

• Quantifies the computational power available in programming
languages by construction.

• Potential to convert complexity-theoretic insights to practical program
analyses.

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 10 / 31

Restricting languages is a bit controversial

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 11 / 31

Programming languages with ((((((((
restrictions guarantees

(safe) Rust
no memory errors, no data races, controlled aliasing

Total functional programming
programs are provably terminating

Theorem-proving languages
require termination, but enable constructing formal proofs

Synchronous languages
for real-time reactive systems with response-time and memory usage
restrictions

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 12 / 31

The challenge with Implicit Computational Complexity

Despite the many compelling features, ICC has remained largely a
theoretical novelty.

The practical power, limitations, and utilities of ICC are not well-understood.

This influences the continued development of ICC theories and limits
exposure of ICC ideas and techniques in broader research communities.

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 13 / 31

Hypothesis

Implicit computational complexity offers applied utilities when lifted

outside the theoretical domain.

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 14 / 31

Questions

• Can we develop practical resource analyses based on these theories?

• Is the theory correct: can we prove formally its soundness?

• If theories can be automated, what are their use cases?

• Can the theories be used to track other semantic properties?

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 15 / 31

Questions

• Can we develop practical resource analyses based on these theories?

• Is the theory correct: can we prove formally its soundness?

• If theories can be automated, what are their use cases?

• Can the theories be used to track other semantic properties?

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 15 / 31

The flow calculus of mwp-bounds
8

Data flow analysis for certifying that final values computed by a
deterministic imperative program will be bounded by polynomials in the
program’s inputs.

8
Jones and Kristiansen, “A flow calculus of mwp-bounds for complexity analysis”.

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 16 / 31

The goal is to discover a polynomially bounded data-flow relation for command C,
between its variables’ initial values xi and final values x

′
i: [[C]](xi ↝ x

′
i).

C′ ≡ X1 := X2 + X3;
X1 := X1 + X1

x
′
1 ≤ 2x2 + 2x3

x
′
2 ≤ x2

x
′
3 ≤ x3

PASS

C′′ ≡ X1 := 1;
loop X2 {X1 := X1 + X1}

x
′
1 ≤ 2x2

x
′
2 ≤ x2

FAIL

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 17 / 31

The goal is to discover a polynomially bounded data-flow relation for command C,
between its variables’ initial values xi and final values x

′
i: [[C]](xi ↝ x

′
i).

C′ ≡ X1 := X2 + X3;
X1 := X1 + X1

x
′
1 ≤ 2x2 + 2x3

x
′
2 ≤ x2

x
′
3 ≤ x3

PASS

X2 X1 X3
w w

p p
m m

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 17 / 31

The goal is to discover a polynomially bounded data-flow relation for command C,
between its variables’ initial values xi and final values x

′
i: [[C]](xi ↝ x

′
i).

C′′ ≡ X1 := 1;
loop X2 {X1 := X1 + X1}

x
′
1 ≤ 2x2

x
′
2 ≤ x2

FAIL

X2

X1

∞

m

∞

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 17 / 31

The goal is to discover a polynomially bounded data-flow relation for command C,
between its variables’ initial values xi and final values x

′
i: [[C]](xi ↝ x

′
i).

X2 X1 X3
w w

p p
m m

X2

X1

∞

m

∞

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 17 / 31

Mechanics of the flow calculus

Imperative Language

(var) X1 ∣ X2 ∣ X3 ∣… (aexp) e + e ∣ e * e (bexp) e = e ∣ e < e ∣…
(com) skip ∣ X := e ∣ C;C ∣ if b then C else C ∣ loop X {C} ∣ while b do {C}

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 18 / 31

Mechanics of the flow calculus

Flow coefficients (dependencies)

0 : no dependency m : maximal w : weak polynomial p : polynomial

weaker…stronger
−−−−−−−−−−⟶

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 18 / 31

Mechanics of the flow calculus

Inference rules

E1
⊢ Xi ∶ {m

i }
⊢ Xi ∶ V1 ⊢ Xj ∶ V2

E3
⊢ Xi⋆ Xj ∶ pV1 ⊕ V2

⊢ e ∶ V A

⊢ Xj = e ∶ 1
j
←− V

…

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 18 / 31

Mechanics of the flow calculus

mwp-bound

max(x⃗, poly1(y⃗)) + poly2(z⃗)

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 18 / 31

Mechanics of the flow calculus

1. Imperative programming language [input]

2. Coefficients (dependencies)

3. Inference rules

4. mwp-bounds [output]

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 18 / 31

Derivation success

C′ ≡ X1 := X2 + X3;
X1 := X1 + X1

X2 X1 X3
w w

p p
m m

E1
⊢ X2 ∶ (0

m
0
)

E1
⊢ X3 ∶ (0

0
m
)
E3

⊢ X2+X3 ∶ (0
p
m
)

A
⊢ X1:=X2+X3 ∶ (0 0 0

p m 0
m 0 m

)
⋮

A
⊢ X1:=X1+X1 ∶ (p 0 0

0 m 0
0 0 m

)
⋮

C

⊢ X1:=X2+X3;X1:=X1+X1 ∶ (
0 0 0
p m 0
p 0 m

)

x
′
1 ≤ x2 + x3 ∧ x

′
2 ≤ x2 ∧ x

′
3 ≤ x3

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 19 / 31

Derivation failure

C′′ ≡ X1 := 1;
loop X2 {X1 := X1 + X1}

X2

X1

?

m

E1
⊢ X1:=1 ∶ (m

0)
⋮

A
⊢ X1:=X1+X1 ∶ (p 0

0 m)
⋮

⊢ C ∶ M
∀i, M

∗
ii = m L

⊢ loop X`{C} ∶ M
∗ ⊕ {p

`→ j ∣ ∃i, M
∗
ij = p}

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 20 / 31

Application challenges

All works nicely on paper.

But we have implementation problems:

• How to handle nondeterminism?

• How to handle derivation failure?

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 21 / 31

Handling non-determinism

Idea: track derivation choices as functions from choices to coefficients.

▷ If a coefficient depends on a choice represent it as 3 elements.

▷ If independent, represented as a single element.

We track not only dependencies, but a history of derivation choices.

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 22 / 31

FIX: Internalize non-determinism

X1 = X2 + X3

↓

��
���(m 0 0

m m 0
p 0 m

)
��

���(m 0 0
p m 0
m 0 m

)
��

���(m 0 0
w m 0
w 0 m

)

↓

(
m 0 0

m.δ(0,0)+p.δ(1,0)+w.δ(2,0) m 0
p.δ(0,0)+m.δ(1,0)+w.δ(2,0) 0 m

)

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 23 / 31

The failure problem

C ≡ while(b){X1:=X2+X2}

Derivation of X1:=X2+X2 yields two matrices: (0 0
p m) and (0 0

w m)

⊢ C ∶ M
∀i, M

∗
ii = m and ∀i, j, M

∗
ij ≠ p W

⊢ while b do {C} ∶ M
∗

⇒ derivation (0 0
p m) fails but derivation (0 0

w m) succeeds.

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 24 / 31

FIX: New way to represent failure

Idea: We introduce∞ flow to represent non-polynomial dependencies.

{0, m, w, p,∞}

Every derivation can be completed without restarts.

Captures localized information about where failure occurs.

Once failure is introduced, it cannot be erased: ∞×∞ 0 = ∞.

C ≡ while(b){X1:=X2+X2} (m+∞δ(0,0)+∞δ(1,0) 0
∞δ(0,0)+∞δ(1,0)+wδ(2,0) m)

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 25 / 31

Implementation: pymwp static analyzer
9

A prototype analyzer for a subset of C99.

Source code and demo: statycc.github.io/pymwp/demo

Install: pip install pymwp

Usage

pymwp path/to/file.c [ARGS]

9
Aubert et al., “pymwp: A Static Analyzer Determining Polynomial Growth Bounds”.

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 26 / 31

https://statycc.github.io/pymwp/demo

The enhanced flow calculus

Q: Can we develop practical resource analyses based on these theories?
A: Yes, eventually.

• All derivations captured deterministically in one (complex) matrix.

• The mwp-bounds are “lost” (this has been resolved since).

• The enhanced system gives more information and captures a larger
class of programs than the original system.

• Many open problems remain: formalization, increasing precision,
analyzing lower bounds, …

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 27 / 31

From Theory to Applications

Implicit computational complexity provides orthogonal techniques for
automatic resource analysis.

Attempts to implement and apply the theories expose their limitations.

Those investigations lead to improvements in the theories.

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 28 / 31

Implicit Complexity in Program Analysis

We can implement program analyses from two directions:

Top-down: reducing a rich language to a restricted subset.

Bottom-up: reasoning about programs before any programs exist

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 29 / 31

Extended Utilities

The techniques developed in implicit computational complexity can be
adjusted to tracking other semantic properties.

We have investigated applications in parallelizing transformations
10
, and

security (ongoing).

These investigations highlight the flexibility of ICC techniques.

10
Aubert et al., “Distributing and Parallelizing Non-canonical Loops”.

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 30 / 31

Take-home Messages

Implicit computational complexity…

• Gives us a rich toolbox of techniques for resource analysis.

• Can be used beyond resources, to track other non-functional properties.

• Should be viewed in broader sense than the name implies.

Fresh Perspectives on Implicit Computational Complexity Neea Rusch 31 / 31

Nondeterministic Inference Rules

E1
⊢ Xi ∶ {m

i }
⊢ C1 ∶ M1 ⊢ C2 ∶ M2 I

⊢ if b then C1 else C2 ∶ M1 ⊕ M2

E2
⊢ e ∶ {w

i ∣ Xi ∈ var(e)}
⊢ Xi ∶ V1 ⊢ Xj ∶ V2

E3
⊢ Xi+Xj ∶ pV1 ⊕ V2

⊢ Xi ∶ V1 ⊢ Xj ∶ V2
E4

⊢ Xi+Xj ∶ V1 ⊕ pV2

⊢ e ∶ V
A

⊢ Xj = e ∶ 1
j
←− V

⊢ C ∶ M
∀i, M

∗
ii = m L

⊢ loop X` {C} ∶ M
∗ ⊕ {p

`
→ j ∣ ∃i, M

∗
ij = p}

⊢ C1 ∶ M1 ⊢ C2 ∶ M2 C
⊢ C1; C2 ∶ M1 ⊗ M2

⊢ C ∶ M
∀i, M

∗
ii = m and ∀i, j, M

∗
ij ≠ p W

⊢ while b do {C} ∶ M
∗

Deterministic Inference Rules

⋆ ∈ {+,−} E
A

⊢ Xi⋆Xj ∶ (0 ↦ {m

i
,p
j
})⊕ (1 ↦ {p

i
,m
j
})⊕ (2 ↦ {w

i
,w
j
})

E
M

⊢ Xi*Xj ∶ {w
i ,wj }

E
S

⊢ Xi ∶ {m

i
}

⊢ e ∶ V A

⊢ Xj = e ∶ 1
j
←− V

⊢ C1 ∶ M1 ⊢ C2 ∶ M2 C
⊢ C1; C2 ∶ M1 ⊗ M2

⊢ C1 ∶ M1 ⊢ C2 ∶ M2 I
⊢ if b then C1 else C2 ∶ M1 ⊕ M2

⊢ C ∶ M L
∞

⊢ loop Xl {C} ∶ M
∗ ⊕ {∞j → j ∣ M

∗
jj ≠ m}⊕ {p

l
→ j ∣ ∃i, M

∗
ij = p}

⊢ C ∶ M W
∞

⊢ while b do {C} ∶ M
∗ ⊕ {∞j → j ∣ M

∗
jj ≠ m}⊕ {∞i → j ∣ M

∗
ij = p}

F

⊢ Xi = F(X1,⋯, Xn) ∶ 1 i
←− ((M1

f)δ(0, c)⊕ ⋅ ⋅ ⋅ ⊕ (Mk
f)δ(0, c)δ(k, c))

