Formally Verified Resource Bounds through Implicit
Computational Complexity

Neea Rusch
Augusta University
Augusta GA, USA
nrusch@augusta.edu

Abstract

Automatic complexity analysis has not reached mainstream
adoption due to outstanding challenges, such as scalability
and usability, and no formally verified analyzer exists. How-
ever, the need to evaluate resource usage is crucial: even a
guaranteed correct program, whose memory usage exceeds
available resources, is unreliable. The field of Implicit Com-
putational Complexity (ICC) offers a potential avenue to
resolving some of these outstanding challenges by introduc-
ing unique, machine-independent, and flexible approaches
to program analysis. But since ICC techniques are mostly
theoretical, it is unclear how strongly these assumptions
hold in practice. This project defines a 3-directional plan—
focused on practical analysis, compiler-integration, and for-
mal verification—to assess the suitability of ICC to address
outstanding challenges in automatic complexity analysis.

CCS Concepts: « Theory of computation — Program
verification; Complexity theory and logic.

Keywords: Implicit Computational Complexity, Automatic
Complexity Analysis, Program Verification

ACM Reference Format:

Neea Rusch. 2022. Formally Verified Resource Bounds through
Implicit Computational Complexity. In Companion Proceedings of
the 2022 ACM SIGPLAN International Conference on Systems, Pro-
gramming, Languages, and Applications: Software for Humanity
(SPLASH Companion °22), December 5-10, 2022, Auckland, New
Zealand. ACM, New York, NY, USA, 4 pages. https://doi.org/10.
1145/3563768.3565545

1 Motivation

Computational complexity is a foundational pillar of com-
puter science: a staple of university curricula and technical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SPLASH Companion °22, December 5-10, 2022, Auckland, New Zealand

© 2022 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-9901-2/22/12...$15.00
https://doi.org/10.1145/3563768.3565545

17

interviews in the industry, it also gives rise to some of the
most famous unsolved problems in theoretical computer sci-
ence. Given the prevalence and extensive study of the topic,
one might expect tools to perform automatic and repeatable
complexity analysis would be equally ubiquitous, but this is
not the case. While automated resource analysis is an active
area of research and several analyzers do exist, they come
with challenges and lack certified correctness. None of the
tools has reached industry-level adoption and consequently
mainstream software is being developed without their sup-
port. This limits opportunity to measure and optimize re-
source usage and hinders assurance of safety and usability
properties potentially compromised by excessive resource
usage. It is of course impossible to analyze behavior of all
programs in general, as proven by Rice’s theorem [12], but
if we can identify feasible techniques that cover sufficiently
large classes of programs, automatic complexity analysis on
realistic programs at scale advances closer to materialization.

The field of Implicit Computational Complexity (ICC) [4]
offers one conceivable pathway toward advancing this goal.
By embedding in programs a guarantee of resource usage,
it captures implicit characterizations of complexity classes
in machine-independent ways. Unlike traditional methods,
ICC systems are generally expressive enough to write down
actual algorithms and have introduced numerous elegant
program analysis techniques that are often orthogonal to
alternative approaches [1]. But ICC techniques have nonethe-
less remained primarily as treasures of the theorists, with
only a few known practical applications [1, 2, 7, 11].

This project bridges the gap between theory and appli-
cation by leveraging techniques from ICC. This will enable
evaluation of their efficiency and powerfulness, and drive for-
ward development of richer systems to cover larger classes
of programs. Furthermore, it represents the first attempt to
certify the correctness of a complexity analyzer; surprisingly
this has not been done before!. Successful completion of
this project would show that certifiably correct complexity
analysis is achievable (3.3), and that ICC techniques can be
used to obtain scalable (3.2), efficient and practical complex-
ity analysis (3.1). These results would extend capabilities in
automatic complexity analysis and take it a few steps closer
to becoming a standard in modern development workflows.

ICarbonneaux et al. [3] share a correctness proof for the technique, but the
analyzer itself, C4B, appears not to be certified.

https://doi.org/10.1145/3563768.3565545
https://doi.org/10.1145/3563768.3565545
https://doi.org/10.1145/3563768.3565545

SPLASH Companion ’22, December 5-10, 2022, Auckland, New Zealand

2 Problem

An accurate definition the research problem requires we
make this important clarification to the intended purpose:
the intent of this work is not to generate the most elaborate
complexity analyzer. Rather, after identifying challenges in
the state-of-the-art techniques, the main idea is to evaluate
suitability of ICC to resolve those challenges. Positive results
serve to advance future versions of concrete tools, but such
enhancements are outside the scope of this work.

The state-of-the-art in automatic complexity analysis is
captured by tools such as AProVE, ComplexityParser, and
RaML. They perform complexity analysis based on different
approaches: integer term rewrite systems [5], tier-based typ-
ing [6], and cost amortization [7], respectively. They offer
varying levels of maturity and feature support and target
different programming languages and paradigms (multiple
formalisms, Java, OCaml). The outstanding challenges, in au-
tomatic complexity analysis in general, relate to choices in
methodologies (scalability, absence of compositionality [3]);
user interaction (level of user control, interpretability of re-
sults [3, 7]); and absence of formal verification to ensure
correctness [3]. The effects of these challenges reduce tool
applicability and performance, negatively impact usability,
and lower trust in their results.

It is a reasonable conjecture that ICC-based techniques
could resolve some of these issues, particularly those related
to methodology and formal verification. ICC systems com-
monly feature simplified syntax, are machine-independent,
language-agnostic, and abstracted to avoid challenges re-
lated to termination and iteration bounds. These properties
suggest they offer scalable and widely applicable alternatives,
especially if introduced at compile-time?. Within ICC, we
can also find naturally compositional systems [8]. Composi-
tionality facilitates fast analysis by creating opportunity for
parallelization, and because unmodified sections of source
code do not require re-analysis on repeated executions. Fur-
thermore, ICC systems seem suitable to formal verification
based on their rigorous mathematical foundation. However,
the factuality of these assumptions remains mostly unestab-
lished, and it is the purpose of this work to evaluate them.

3 Approach

To approach the identified problem, we construct the fol-
lowing 3 hypotheses of equal importance, as related to ICC
systems and complexity analysis:

1. ICC systems can be applied in realistic settings (3.1).
2. Scalability can be achieved through compilers (3.2).
3. Formal verification is achievable (3.3).

We then define a matching subproject to address each
hypothesis: the first will evaluate the suitability of ICC as a
technique in practical analysis; the second will implement

2Compilers are an optimal target because they offer multi-language support
and inherent ability to translate between different representations.

18

Neea Rusch

ICC-based analysis as a compiler pass; and the third will
strive to produce a formally verified static analyzer for re-
source usage. These 3 subprojects are mutually exclusive:
they can be completed in parallel, and success (or failure)
in one branch does not impact the rest. Collective success
across all subprojects would strongly enforce the argument
for suitability of ICC to practical applications, and bring us
closer to achieving formally verified, efficient and scalable
automatic complexity analysis in compilers. A brief overview
of the methods and evaluation strategies follows next.

3.1 Realizing ICC

The foundation of this work is a theoretical method called
mwp-analysis [8], explained shortly below. The question of
interest then becomes, given this method, does it provide
an efficient and feasible technique that can be applied in
practice? If yes, it then affirms the assumption that ICC-
based techniques are also relevant in practical scenarios.

Methodology. mwp-analysis is a computational method
that allows formal derivations of true statements about pro-
grams. Founded on the mwp-calculus, it uses matrices that
record data flows between variables as commands are exe-
cuted. For a program C and matrix M, the analysis computes
a polynomial bound—if it exists—on the sizes of variables
of C, captured in M. The main theorem is the soundness
property, that guarantees iff there exists a derivation in the
calculus, every value computed by C is bounded by a poly-
nomial in inputs [8].

Practical application of this analysis is a non-trivial task,
because the original derivability problem is NP-complete,
the inference rules of the calculus are nondeterministic, and
the syntax is not rich enough to support realistic analysis.
Our practical and extended method resolves these challenges
by extending the original method and its syntax, redefining
its derivation rules, and generating efficient data represen-
tations and algorithms to process the data and to compute
the result. Our method is implemented as a standalone static
analyzer pymwp, to demonstrate and measure the efficiency
of the improved and extended technique. The analyzer takes
as input programs written in a subset of the C language, and
returns a multi-variate growth bound, if one can be derived.
Since the result provides individual bounds of each variable,
it is useful to programmers for obtaining fine-grained and
actionable feedback.

Evaluation. Work on this subproject has reached the
stage of publication [1]. We benchmarked pymwp using 42
custom benchmarks, on which it produced correct results
efficiently (< 5 s). This demonstrates a positive result for the
first hypothesis. However, further work remains. We need
to extend the syntactical support of C language to enable
evaluation on standard benchmark suites. While the multi-
variate result is useful, it is also problematic when attempting
to compare results between alternative tools that produce
single-variate bounds. Addressing those issues will enable

https://aprove.informatik.rwth-aachen.de/
https://gitlab.inria.fr/complexityparser/complexityparser/
https://www.raml.co/
https://statycc.github.io/pymwp/

Formally Verified Resource Bounds through Implicit Computational Complexity SPLASH Companion *22, December 5-10, 2022, Auckland, New Zealand

more extensive measurements. Nonetheless, the result is
promising. We are confident this technique can be extended
and will continue to pursue this direction.

3.2 ICC Meets Compilers

Earlier work by Moyen et al. [11] proved that performing
ICC-based analysis in compilers is not only achievable but
can also offer new techniques for optimizing resource us-
age during compilation. This seminal paper was the first
known application of ICC in a mainstream compiler (LLVM)
and serves as inspiration here. The assertion to evaluate is
whether ICC can be applicable to a large number of pro-
grams and source programming languages, if the techniques
are implemented as compiler passes. While the earlier work
suggests this assertion holds, it left open questions about
measured scalability and applications of alternative ICC tech-
niques, and therefore further work remains.

Methodology. This subproject involves the LLVM com-
piler, and the goal is to implement an analysis method (pos-
sibly paired with optimization) on the intermediate repre-
sentation (IR) in the compiler middle-end. Future decisions
must be made regarding the exact analysis technique, the
input syntax and expected program structure. The challenge
with this approach is handling memory operations, which
are often omitted in the definitions of ICC systems. This
subproject is currently in active planning stage, and we hope
to clarify these details shortly.

Evaluation. Several quantifiable measures for evaluating
the success of this subproject exist: 1) the performance of
the implemented pass and how much overhead it adds to
compilation time, and 2) the proportion of programs that can
be analyzed or optimized, and if the technique involves pro-
gram transformation, 3) the execution time of the generated
assembly can be measured before and after (clock time, LOC)
on standard benchmark suites. A positive result, in combi-
nation with the LLVM compiler, would suggest scalability
of these techniques, since the compiler supports multiple
source and target languages.

3.3 Formally Verified Complexity

Formally verified toolchains, using machine-assisted mathe-
matical proofs, are in high demand and especially vital for
ensuring the correctness of critical software. While results
are lacking in complexity analysis, realistic systems exist
in related domains. The CompCert verified C compiler [10]
establishes the foundation for provably correct realistic com-
pilation and guarantees preservation of program semantics.
Subsequent work by Jourdan et al. [9], in their case using
abstract interpretation to analyze runtime errors, proved
that formally verified static analysis is possible. The goal
for this work is similar but using ICC to analyze program
complexity.

Methodology. Reusing the mwp-analysis [8], the plan is
to mechanically prove its correctness using the Coq proof

assistant. In more detail, it requires defining the language
and operational semantics, and inference rules of the mwp-
calculus, and the matrix-based analysis; and proving correct
the main theorem, the soundness property, - C : M implies
E C : M. The Coq proof assistant was selected for imple-
mentation because it was used in the earlier works, offers
maturity and community support, and appears suitable for
this project. The current plan is to implement and prove the
system completely in Coq, rather than a posteriori valida-
tion. The written proofs from the original paper and pymwp
version of the analysis will further help guide the Coq imple-
mentation.

This work is currently in early stages but seems feasible be-
cause we have firm understanding of the method and how to
implement it. If a formally verified analyzer can be completed,
a subsequent question of interest then becomes whether the
analyzer can be integrated with a formally verified compiler,
such as CompCert, to ensure compiler-preserving treatment
of the analysis result.

Evaluation. The success of this work greatly depends on
the ability to complete the Coq proofs and implementation.
Evaluation metrics can be obtained relating to the efficiency
of the analysis and its scalability, measured using suitable
benchmarks, depending on the analysis source language.

4 Conclusion and Future Work

This project will assess the capabilities of ICC in resolving
some of the outstanding challenges in automatic complexity
analysis. The problem is further divided into 3 subprojects,
each with different focus and independent results: efficient
and practical analysis, scalability through compilers, and
correctness through formal verification. Work in the latter
two areas is still preliminary, but encouraging results exist in
the first case to enforce the proposed assumptions. The em-
phasis of future work will be on LLVM compiler integration
and formal verification using the Coq proof assistant. If all
work can be completed successfully, it will be a step toward
achieving formally verified, efficient and scalable automatic
complexity analysis in mainstream compilers.

References

[1] Clément Aubert, Thomas Rubiano, Neea Rusch, and Thomas Seiller.

2022. mwp-Analysis Improvement and Implementation: Realizing

Implicit Computational Complexity. In 7th International Conference on

Formal Structures for Computation and Deduction, FSCD 2022 (LIPIcs,

Vol. 228). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 26:1-

26:23. https://doi.org/10.4230/LIPlcs.FSCD.2022.26

Martin Avanzini and Ugo Dal Lago. 2017. Automating sized-type

inference for complexity analysis. Proc. ACM Program. Lang. 1, ICFP

(2017), 43:1-43:29. https://doi.org/10.1145/3110287

[3] Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao. 2015. Compo-
sitional Certified Resource Bounds (PLDI '15). Association for Com-
puting Machinery, New York, NY, USA, 467-478. https://doi.org/10.
1145/2737924.2737955

[4] Ugo Dal Lago. 2011. A Short Introduction to Implicit Computa-
tional Complexity. In ESSLLI (LNCS, Vol. 7388), Nick Bezhanishvili and

[2

—

https://en.wikipedia.org/wiki/Coq
https://en.wikipedia.org/wiki/Coq
https://doi.org/10.4230/LIPIcs.FSCD.2022.26
https://doi.org/10.1145/3110287
https://doi.org/10.1145/2737924.2737955
https://doi.org/10.1145/2737924.2737955

SPLASH Companion ’22, December 5-10, 2022, Auckland, New Zealand

Valentin Goranko (Eds.). Springer, 89-109. https://doi.org/10.1007/978-
3-642-31485-8_3

[5] Jurgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian

—

Emmes, Florian Frohn, Carsten Fuhs, Jera Hensel, Carsten Otto, Mar-
tin Pliicker, Peter Schneider-Kamp, et al. 2017. Analyzing program
termination and complexity automatically with AProVE. Journal of Au-
tomated Reasoning 58, 1 (2017), 3-31. https://doi.org/10.1007/s10817-
016-9388-y

Emmanuel Hainry, Emmanuel Jeandel, Romain Péchoux, and Olivier
Zeyen. 2021. Complexityparser: An automatic tool for certifying poly-
time complexity of java programs. In Theoretical Aspects of Computing
- ICTAC 2021 (Lecture Notes in Computer Science, Vol. 12819). Springer,
357-365. https://doi.org/10.1007/978-3-030-85315-0_20

[7] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2012. Resource

Aware ML. In Computer Aided Verification - 24th International Confer-
ence, CAV 2012 (LNCS, Vol. 7358), P. Madhusudan and Sanjit A. Seshia
(Eds.). Springer, 781-786. https://doi.org/10.1007/978-3-642-31424-

20

[8

[}

Neea Rusch

7 64

Neil D. Jones and Lars Kristiansen. 2009. A flow calculus of mwp-
bounds for complexity analysis. ACM Trans. Comput. Log. 10, 4 (2009),
28:1-28:41. https://doi.org/10.1145/1555746.1555752

[9] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy,

[10]

and David Pichardie. 2015. A formally-verified C static analyzer. ACM
SIGPLAN Notices 50, 1 (Jan. 2015), 247-259. https://doi.org/10.1145/
2775051.2676966

Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun.
ACM 52, 7 (2009), 107-115. https://doi.org/10.1145/1538788.1538814

[11] Jean-Yves Moyen, Thomas Rubiano, and Thomas Seiller. 2017. Loop

[12]

Quasi-Invariant Chunk Detection. In International Symposium on Au-
tomated Technology for Verification and Analysis. 91-108. https:
//doi.org/10.1007/978-3-319-68167-2_7

M. Sipser. 2012. Introduction to the Theory of Computation. Cengage
Learning.

https://doi.org/10.1007/978-3-642-31485-8_3
https://doi.org/10.1007/978-3-642-31485-8_3
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/978-3-030-85315-0_20
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1145/1555746.1555752
https://doi.org/10.1145/2775051.2676966
https://doi.org/10.1145/2775051.2676966
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1007/978-3-319-68167-2_7
https://doi.org/10.1007/978-3-319-68167-2_7

	Abstract
	1 Motivation
	2 Problem
	3 Approach
	3.1 Realizing ICC
	3.2 ICC Meets Compilers
	3.3 Formally Verified Complexity

	4 Conclusion and Future Work
	References

