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Abstract. We present pymwp, a static analyzer that automatically com-
putes, if they exist, polynomial bounds relating input and output sizes. In
case of exponential growth, our tool detects precisely which dependencies
between variables induced it. Based on the sound mwp-flow calculus,
the analysis captures bounds on large classes of programs by being non-
deterministic and not requiring termination. For this reason, implementing
this calculus required solving several non-trivial implementation prob-
lems, to handle its complexity and non-determinism, but also to provide
meaningful feedback to the programmer. The duality of the analysis
result and compositionality of the calculus make our approach original in
the landscape of complexity analyzers. We conclude by demonstrating
experimentally how pymwp is a practical and performant static analyzer
to automatically evaluate variable growth bounds of C programs.
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1 Introduction – Making Use of Implicit Complexity

Certification of any program is incomplete if it ignores resource considerations,
as runtime failure will occur if usage exceeds available capacity. To address this
deficiency, automatic complexity analysis produced many different implemen-
tations [9,13,14,15] with varying features. This paper presents the development
and specificities of our automatic static complexity analyzer, pymwp.

The first original dimension of our tool is its inspiration, coming from Implicit
Computational Complexity (ICC) [10]. This field designs systems guaranteeing
program’s runtime resource usage that tend to possess practically useful properties.
For this reason, it is conjectured that ICC systems could be used to achieve
realistic complexity analysis [18, p. 16]. Our series of work [5,6] is testing this
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hypothesis, and resulted in the tool we present in this paper: pymwp is one of
the first ICC-inspired applications, and the first mechanization of the specific
technique it implements. Let us first exemplify what pymwp calculates.

Example 1. Consider an imperative program with a fixed number of parameters:

void increasing(int X1, int X2 , int X3) {
while (X2 < X1) { X2 = X1 + X1; }
while (X3 < X2) { X3 = X2 + X2; }

}

Independently of the arguments passed (henceforth called initial values), once
computation concludes, X1 will hold the same value, but the values held by X2 and
X3 may have changed. By manual analysis, we can deduce that the variable values
“growth bound” between the initial values X1, X2 and X3 (overloading initial
values and parameter names) and their final values (denoted X1’, X2’ and X3’),
omitting constants, is X1’ = X1, X2’ ≤ max(X1,X2) and X3’ ≤ max(X3,X2 + X1).4
Therefore, for all initial values, the value growth of the variable’s value is bounded
by a polynomial w.r.t. its initial values. Our analysis is designed to either produce
such bounds, or to pinpoint variables that grow exponentially.

Introducing more variables, or potentially non-terminating iteration, or com-
plicating the logic would make manual analysis difficult. However, our static
analyzer handles all those cases automatically. It determines if a program accepts
at least one polynomial bounding the final value of its variables in terms of their
initial values—what we call its growth bound. If a bound cannot be established,
it provides feedback on sources of failure, identifying variable pairs that have
“too strong” dependencies. The technique is sound [16, p. 11], meaning a positive
result guarantees program has satisfactory value growth behavior at runtime.

The mwp-flow analysis [16], that powers this tool, is of interest for its flexi-
bility, originality, and uncommon features [9] such as being compositional and
not requiring termination. However, using it to implement an automatic analyzer
required important theoretical adjustments, and to sidestep or solve computa-
tionally expensive steps in the derivation of the bounds. For example, approaches
to determine bounds were motivated by the need to compute them rapidly and
present them in a concise human-interpretable manner, which is problematic for
potentially exponential number of outputs. The theoretical improvements were
presented previously [5] and serve as basis for pymwp. In this paper, we focus on
the tool and its recent advancements, with following contributions.

1. We present the static analyzer pymwp in Sect. 3. It evaluates automatically
if an input program has a polynomial growth bound and provides actionable
feedback on failure. Our tool is easy to use and install; open-source, well-
documented, and persistently available for future reuse.

4 Observe that the bound for X3’ involves X1 and X2: the presence of X1 in the bound
of X2’ transitively impacts the bound for X3’, because the analysis is compositional.

https://github.com/statycc/pymwp/blob/22f2ee159d86e83c3ee46ec62ecbc2b0a89d2d28/c_files/tool_paper/tool_ex_1.c
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2. Implementing the theoretical mwp-calculus required to solve several non-
trivial implementation problems. Specifically, how to obtain fast and concise
results was solved by recent tool developments, and discussed in Sect. 4.

3. Sect. 5 demonstrates that pymwp is a practical and performant static analyzer
by experimentally analyzing a set of canonical C programs. The evaluation
also includes every example presented in this paper.

2 Calculating Bounds with mwp-Analysis

Given a deterministic imperative program over integers constructed using while,
if and assignments, the mwp-analysis aims at discovering the polynomials
bounding the variables final values X1’, . . . , Xn’ in terms of their initial values
X1, . . . , Xn [16, p. 5]. This section gives insight on how to interpret the results
of pymwp, exemplifies those bounds in more detail, and identifies its distinctive
features in the landscape of automatic complexity analysis.

2.1 Interpreting Analysis Results: mwp-Bounds and ∞

The mwp-flow analysis internally captures dependencies between program’s
variables to determine existence of growth bounds and locates problematic data
flow relations. A flow can be 0, meaning no dependency; maximal of linear, weak
polynomial, polynomial or ∞, in increasing order of dependency. When the value
of every variable in a program is bounded by at most a polynomial in initial values,
the flow calculus assigns each variable an mwp-bound. It is a number-theoretic
expression of form max(x, poly1(y)) + poly2(z), where variables characterized
by m-flow are listed in x; w-flows in y, and p-flows in z. Honest polynomials
poly1 and poly2 are build up from constants and variables by applying + and ×.
Any of the three variable lists might be empty and poly1 and poly2 may not be
present. A bound of a program is conjunction (∧) of mwp-bounds. Variables that
depend “too strongly” are assigned ∞-flow, to indicate exponential growth.

Expression reads as “The growth of X’ is bounded by . . . ”

X’ ≤ 0 “. . . a constant.”
X’ ≤ X “. . . a polynomial in X.” (its initial value)

X′ ≤ max(X, X1) + X2× X3 “. . . a polynomial in X or X1, X2 and X3.”
Determining program bounds is complicated because the flow calculus is non-

deterministic. This enables to analyze a larger class of programs, but also means
that one program may be assigned multiple bounds. If a program is assigned a
bound, it is derivable in the calculus. An impossibility result occurs when all
derivation “paths” yields an ∞-result.

2.2 Additional Foundational Examples

One important and original aspect is that the mwp-flow analysis ignores Boolean
conditions, assuming that both if-branches evaluate, and that loops executes an
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arbitrary number of cycles. This lets pymwp analyze non-terminating programs
without complications, and justifies why all conditions will be abstracted as b.

Letting C1 ≡ X2 = X1 + X1 and C2 ≡ X3 = X2 + X2, Example 1 estab-
lished that the iterative composition while b C1; while b C2 has a polyno-
mial growth bound, i.e., the property of interest.5 We now elaborate on mwp-
flow analysis behavior by inspecting two more expository programs, letting
C3 ≡ X3 = X3 * X3.

Example 2. Consider program while b C3. Even if C3 in itself admits the bound
X3’ ≤ X3, the value stored in variable X3 will grow exponentially on each iteration.
Therefore, the program cannot get a growth bound, due to the ∞ flow between
X3 and itself introduced by the while statement.

Example 3. Combining elements from the previous two examples, we construct
while b C1; while b C2; C3. Variables X1 and X2 are unaffected by C3, but
X3 changes. We over-approximate the final value of X3 to obtain the program’s
growth bound X1’ ≤ X1 ∧ X2’ ≤ max(X2,X1) ∧ X3’ ≤ X1 + X2 + X3. This example
shows how partial results (X3’ ≤ max(X3,X1+X2) and X3’ ≤ X3) can be combined
to obtain new bounds (X3’ ≤ X1 + X2 + X3) by compositionality.

In the tool user guide, we present even more examples with in-depth discussion,
to elaborate on the behavior and results of mwp-analysis.

2.3 Originalities of mwp-flow Analysis

The mwp technique offers many properties that make it unique and practically
useful. It is a syntactic analysis, not based on general purpose reasoners e.g.,
abstract interpreters or model checkers. It requires little structure, and no man-
ual annotation from the analyzed program. This enables its implementation on
any imperative programming language, and potentially at different stages of
compilation. Compositionality is another significant feature. Non-compositional
techniques require inlining programs and are common among automated com-
plexity analyses [9]. With compositionality, analysis can be performed on parts of
whole-programs, and after refactoring, repeated only on those parts that changed.

Several tools that evaluate resource bounds already exist [1,2,8,12,13,14,15,17];
including LOOPUS [25] and C4B [9], that specialize in C language inputs. Com-
prehensive evaluations of these tools have also been performed recently [9,11,25].
The main distinguishing factor between these tools and pymwp is the program’s
complexity property of interest: pymwp evaluates the existence of polynomial
growth bounds w.r.t. initial values. We illustrate the difference in obtained bounds
in Table 1. It is not an extensive comparison but suffices to show that pymwp
differs in its aims from the other related techniques.

5 pymwp actually outputs X1’ ≤ X1 ∧ X2’ ≤ max(X2,X1) ∧ X3’ ≤ max(X3,X1 + X2).

https://statycc.github.io/.github/pymwp/
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Table 1. Comparison of obtained resource bounds for various C language analyzers, on
examples from Carbonneaux et al. [9, p. 26]. LOOPUS and C4B find asymptotically
tight bounds based on amortization. LOOPUS calculates bounds on loop iterations,
C4B derives global whole-program bounds, and pymwp analyzes variables growths. The
inputs are part of Sect. 5 benchmark suite, and available in the pymwp repository [24].

Input LOOPUS C4B pymwp

t19.c max(0, i− 102) + max(0, k + i+ 51) 50+ |[−1, i]|+ |[0, k]| i’ ≤ i+ k ∧ k’ ≤ k
t20.c 2 ·max(0, y − x) + max(0,x− y) |[x, y]|+ |[y,x]| x’ ≤ x ∧ y’ ≤ y
t47.c 1 + max(n, 0) 1 + |[0,n]| n’ ≤ n ∧ flag’ ≤ 0

3 Technical Overview of pymwp

In this section we present the main contribution of the paper: the pymwp static
analyzer. It is a command-line tool that analyzes programs written in subset
of C programming language presented in Sect. 3.3. The name alludes to its
implementation language, Python, which we selected for its flexibility and use in
previous related works [4,19,20]. Our tool takes as input a path to a C program,
and returns for each function it contains a growth bound—if at least one can be
established—or a list of variable dependencies that may cause the exponential
growth.6 The pymwp development is open source [24] with releases published
at Python Package Index (PyPI) [22], GitHub [24] and Zenodo [7]. A tool user
guide is available at https://statycc.github.io/.github/pymwp/.

3.1 Program Analysis in Action

The default procedure for performing mwp-analysis is as follows:

1. Parse input file to obtain an abstract syntax tree (AST).
2. Initialize a Result object T .
3. For each function (or “program”, interchangeably) in the AST:

(a) Create an initial Relation R—briefly, this complex structure represents
variables and their dependencies, at a program point (Sect. 4.1).

(b) Sequentially for each statement in function body:
i. Recursively apply inference rules to obtain Ri.
ii. Compose Ri with previous relation: R = R ◦Ri.
iii. If no bound exists, terminate analysis of function body.

(c) If bounds exist, evaluate R to determine the bounds (Sect. 4.3)
(d) Append function analysis result to T .

4. Return T .

6 Obtaining this feedback requires to specify the --fin argument.

https://github.com/statycc/pymwp/blob/c6887d8e8a2c2b0e2a6b7ad960851ec693c603d3/c_files/tool_paper/t19_c4b.c
https://github.com/statycc/pymwp/blob/c6887d8e8a2c2b0e2a6b7ad960851ec693c603d3/c_files/tool_paper/t20_c4b.c
https://github.com/statycc/pymwp/blob/c6887d8e8a2c2b0e2a6b7ad960851ec693c603d3/c_files/tool_paper/t47_c4b.c
https://statycc.github.io/.github/pymwp/
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3.2 Usage

There are multiple ways to use pymwp. It has a text-based application interface,
and can be run from terminal, or it can be imported as a Python module into
larger software engineering developments. The analysis is automatic and read-
only, therefore it is possible to pair pymwp with other tools and integrate it into
compilation or verification toolchains. The online demo provides one example use
case. It is a web server application with pymwp as a package dependency. Other
derived uses can be developed similarly. The easiest way to install pymwp is from
PyPI, using command pip install pymwp. The default interaction command is

pymwp path/to/file.c [args]

where the first positional argument is required. By default, pymwp displays the
analysis result with logging information, and writes the result to a file. This
behavior is customizable by specifying arguments. For a list of currently supported
arguments run pymwp –-help.

3.3 Scope of Analyzable Programs

The programs analyzable with pymwp are determined by its supported syntax.
pymwp delegates the task of parsing C files to its dependency, pycparser [21], which
aims to support the full C99 specification. Programs that cannot be parsed will
expectedly throw an error. Otherwise, analysis proceeds on the generated AST,
and pymwp handles nodes that are syntactically supported by its calculus.7 It
skips unsupported nodes with a warning. We decided on this permissive approach,
because it allows to obtain partial results and manually inspect unsupported
operations. However, to establish a guaranteed bound, the input program must
fully conform to the supported syntax of the calculus. Currently the syntax has
limitations, e.g., arrays and pointer operations are unsupported. Extending the
analysis to richer syntax is a direction for future work.

4 Implementation Advancements

Notable technical progress has occurred since the initial mention of pymwp in
the literature [5].8 We will discuss those solutions in this section.

4.1 Motivations for Refining Analysis Results

Understanding pymwp’s advances requires to briefly reflect on its past. The
mwp-flow, as originally designed [16], is an inference system that has an unbear-
able computational cost, as it manipulates non-deterministically an exponential
number of sizable matrices [5, Sect. 2.3] to try to establish a bound. Our enhanced

7 List of supported features: https://statycc.github.io/pymwp/features.
8 Full comparison: https://github.com/statycc/pymwp/compare/FSCD22...0.4.2.

https://statycc.github.io/pymwp/demo/
https://statycc.github.io/pymwp/features
https://github.com/statycc/pymwp/compare/FSCD22...0.4.2
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mwp-technique [5] resolved this challenge by internalizing the non-determinism in
a single matrix, containing coefficients and functions from choices into coefficients.
This way, all derivations—including the ones that will fail—are constructed at the
same time, moving the problem from “Is there a derivation?” to “Among all the
derivations you constructed, is there one without ∞ coefficient?”—an equivalent
question that however complicates the production of the actual bound.

While answering the first question is too computationally expensive, pymwp’s
U FSCD 2022 version can answer the second, and it can further, if all derivations
contain ∞ coefficients, terminate early for faster result [5, Sect. 4.4]. This was
achieved thanks to a complex Relation data structure,9 but extracting finer
information from that data structure remained an outstanding problem. In
particular, we wanted to provide the following feedback to the programmer: (i) If
no bound exists, the location of the exponential growth. (ii) If bounds exist, the
value of at least one of them. The current version of pymwp can now provide
this feedback, thanks to a long maturation that we now detail.

4.2 Exposing Sources of Failure

Since pymwp identifies polynomial bounds, it reports failure on programs contain-
ing at least one variable whose value grows exponentially w.r.t. at least one of its
initial value. Earlier tool versions would indicate that failure was detected without
reporting the involved variables. Determining this information is complicated
because of our treatment of non-determinism, but it is valuable, as addressing one
of those points of failure would suffice to obtain a polynomial growth bound. Even
if the program cannot be refactored satisfactorily, then analyzing the exponential
growth allows to assess potential impact on the parent software application.

Our solution is to record additional information about ∞-coefficient in the
Relation data structure, and to list all variable pairs on which failure may occur.
Since detailed failure information may not be relevant in some use-cases, and is
costly to compute, it was added as an optional –fin argument.

Example 4. From our tool user guide (output abridged for clarity):

int foo(int X1 , int X2, int X3){
if (X1 == 1){

X1 = X2+X1;
X2 = X3+X2;

}
while(X1 < 10){

X1 = X2+X1;
}

}

$ pymwp infinite/infinite_3.c --fin
foo is infinite
Possibly problematic flows:
X1 → X1 ∥ X2 → X1 ∥ X3 → X1

Reads as “X1 depends too strongly on all variables.”

9 A complex data structure sounds daunting, but it is in fact one of the highlights of
the system, and enables to solve a difficult derivation problem efficiently. For details,
see the documentation at https://statycc.github.io/pymwp/relation.

https://github.com/statycc/pymwp/releases/tag/FSCD22
https://statycc.github.io/.github/pymwp/#inf-prog
https://statycc.github.io/pymwp/relation
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4.3 Efficiently Determining Bounds

In the alternative case, where bounds are determined to exist, the next step is
to evaluate the bounds—step 3(c) in the pymwp workflow (Sect. 3.1). This is
problematic because the calculus can yield an exponential number of bounds w.r.t.
the program size, as illustrated in Table 3 with e.g., benchmark 32. long. As a
result, the evaluation phase—e.g., extracting the bounds from this conglomerate
of derivations—is increasingly costly. Handling this task efficiently required us to
discover a computational solution, and finding a compact format to represent the
results in interpretable and memory-efficient manner. For simplicity we describe
this process only at high-level, but refer to the implementation for complete
details.

Determining mwp-bounds requires two separate steps, starting with the
Relation data structure generated during analysis phase. The first challenge is
to determine which paths in our conglomerate of derivations produce bounds (i.e.,
does not contain ∞). A naïve brute force solution would iterate over all paths, but
this is too slow for practical use. Instead, we developed a set-theoretic approach,
that determines first all derivation paths that lead to ∞ and then negates those
paths. We capture this process in a structure called Choice, and the result of
this computation is called a choice vector. A choice vector contains all derivation
paths yielding a bound in a compact, regular expression-like representation. Once
those paths are known, it is possible to extract from a Relation an mwp-bound
(represented as a Bound object), by applying a selected path. Currently, we take
the first choice from the choice vector, and display it as a result. Leveraging this
set of bounds and its utilities is discussed in conclusion and left for future work.

5 Experimental Evaluation

To establish that pymwp is a practical and performant static analyzer, we
evaluated it on a benchmark suite of canonical C programs. We ran the analyzer
on the benchmarks and measured the results, thus conducting an evaluation of
performance and behavioral correctness. We did not perform tool comparison
or use a standard suite for two reasons: absence of a representative comparison
target (cf. Sect. 2.3) and syntactic restrictions that limit the scope of analyzable
programs (cf. Sect. 3.3). However, the choice methodology judiciously evaluates
pymwp, and facilitates transparency and reproduction of experiments. We actively
put heavy emphasis to ensure—with software engineering best practices e.g.,
tests, documentation [23], and long-term archival deposits [7]—that pymwp, and
the evaluation presented here, are available and reusable for future comparisons.

5.1 Methodology

Benchmarks Description The suite contains 50 C programs, written in the sub-
set of C99 syntax supported by pymwp. The benchmarks are designed purposely
to exercise various data flows that pose challenges to the analyzer, e.g., increasing

https://statycc.github.io/pymwp/relation
https://statycc.github.io/pymwp/choice/
https://statycc.github.io/pymwp/bound/
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parameters, binary operations, loops and decisions, and various combinations of
those operations. The benchmarks are organized into seven categories based on
their expected result (∞ vs. non-∞); origin in related publications [5,16], and in
this tool paper; and interest (basic examples, others). We omit these categories
here, but they are apparent in the benchmarks distribution. The suite is available
from pymwp repository [24], and as a release asset on GitHub, and Zenodo [7].

Metrics For each benchmark, we record 1. benchmark name, corresponding to
C file name, followed by “: program name” if a file contains multiple programs.
2. The lines of code (loc) in the benchmark. Observe this number ranges be-
tween 4 and 45: this is reasonable and representative, because the analysis is
compositional. Analysis of even a large C file reduces to analysis of its functions,
that would be expectedly similar in size to these benchmarks. 3. The time (ms)
required to complete program analysis. We use milliseconds for precision since all
analyses conclude within seconds. For ∞-programs, the time is for performing
full evaluation with feedback, although a result of existential failure could be
obtained faster. 4. Number of program initial values (vars), which internally
impacts complexity of the analysis. 5. Number of polynomial bounds discovered
by the analyzer. The number of bounds is 0 if the result is ∞. 6. If a program is
derivable, we capture one of its bounds.

Experimental Setup The measurements were performed on a Linux x86_64,
kernel v.5.4.0-1096-gcp, Ubuntu 18.04, with 8 cores and 32 GB virtual memory.
The machine impacts only observed execution time; other metrics are determinis-
tic. The software environment was Python runtime 3.8.0, gcc 7.5.0, GNU Make
4.1, and the dev dependencies of pymwp. Because the measurement utilities of
pymwp are not distributed with its release, the experiments must be run from
source. We used source code version U 0.4.2. The command to repeat experiments
is make bench. It runs analysis on benchmarks and generates two tables of results.

5.2 Results

The evaluation results are presented in Table 2. We emphasize in these results
the obtained bounds and their correctness, while the obtained execution times
provide referential information of performance. The analyzer correctly finds
a polynomial bound for noninfinite benchmarks, and rejects exponential and
infinite benchmarks. The analyzer is also able to derive bounds for potentially
non-terminating while benchmarks. Observe that the analysis concludes rapidly
even for a long example with 45 loc, and for explosion, that has initial values
count 18. The number of bounds for long is high, because it is a complicated
derivation with high degree of internalized non-determinism.

For programs that have polynomial growth bounds, we give a simplified
example bound in Table 3. We omit in this representation variables whose only
dependency is on self, e.g., X’ ≤ X.10 The table serves to demonstrate that pymwp
10 Bound of example5_1 does not appear in Table 3 because of this simplification.

https://github.com/statycc/pymwp/tree/c6887d8e8a2c2b0e2a6b7ad960851ec693c603d3/c_files
https://github.com/statycc/pymwp/releases/download/0.4.2/examples.zip
https://github.com/statycc/pymwp/releases/tag/0.4.2
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Table 2. Benchmark results for a canonical test suite of C programs. Benchmark that
have 0 bounds represents case where analyzer reports an ∞-result.

# Benchmark loc ms vars bounds

1. assign_expression 8 0 2 3
2. assign_variable 9 0 2 3
3. dense 16 15 3 81
4. dense_loop 17 66 3 81
5. example14: f 4 2 2 1
6. example14: foo 11 0 2 3
7. example16 15 7 4 27
8. example3_1_a 10 1 3 9
9. example3_1_b 10 2 3 9
10. example3_1_c 11 3 3 1
11. example3_1_d 12 1 2 0
12. example3_2 12 2 3 0
13. example3_4 22 14 5 0
14. example5_1 10 0 2 1
15. example7_10 10 1 3 9
16. example7_11 11 9 4 27
17. example8 8 1 3 9
18. explosion 23 405 18 729
19. exponent_1 16 7 4 0
20. exponent_2 13 4 4 0
21. gcd 12 10 2 0
22. if 7 0 2 3
23. if_else 7 0 2 9
24. infinite_2 6 16 2 0
25. infinite_3 9 7 3 0

# Benchmark loc ms vars bounds

26. infinite_4 9 2189 5 0
27. infinite_5 11 518 5 0
28. infinite_6 14 1031 4 0
29. infinite_7 15 298 5 0
30. infinite_8 23 722 6 0
31. inline_variable 9 0 2 3
32. long 45 2875 5 177147
33. notinfinite_2 4 1 2 9
34. notinfinite_3 9 7 4 9
35. notinfinite_4 11 30 5 3
36. notinfinite_5 11 29 4 9
37. notinfinite_6 16 34 4 81
38. notinfinite_7 15 283 5 9
39. notinfinite_8 22 856 6 27
40. simplified_dense 9 1 2 9
41. t19_c4b 9 2 2 81
42. t20_c4b 7 1 2 9
43. t47_c4b 12 1 2 3
44. tool_ex_1 7 5 3 1
45. tool_ex_2 7 0 2 0
46. tool_ex_3 9 8 3 3
47. while_1 7 1 2 3
48. while_2 7 1 2 1
49. while_if 9 3 3 9
50. xnu 26 17 5 6561

Table 3. Examples of obtained bounds for corresponding benchmarks. For compactness,
the bounds are simplified to exclude variables that have dependency only on self.

# Benchmark bound

1. y2′ ≤ y1
2. x′ ≤ y
3. X0′ ≤ max(X0, X2) + X1 ∧ X1′ ≤ X0× X1× X2

∧ X2′ ≤ max(X0, X2) + X1
4. X0′ ≤ max(X0, X2) + X1 ∧ X1′ ≤ X0× X1× X2

∧ X2′ ≤ max(X0, X2) + X1
5. X2′ ≤ max(X2, X1)
6. X2′ ≤ X1
7. X1′ ≤ R+ X1 ∧ X2′ ≤ X1 ∧ X_1′ ≤ X1 ∧ R′ ≤ R+ X1
8. X1′ ≤ X2+ X3
9. X1′ ≤ X2× X3
10. X1′ ≤ max(X1, X2+ X3)
15. X3′ ≤ X3+ X1× X2
16. X1′ ≤ X1+ X2× X3× X4 ∧ X2′ ≤ X2+ X3× X4

∧ X3′ ≤ X3+ X4
17. X1′ ≤ X1+ X2× X3
18. x0′ ≤ x1+ x2 ∧ x3′ ≤ x4+ x5 ∧ x6′ ≤ x7+ x8

∧ x9′ ≤ x10+ x11 ∧ x12′ ≤ x13+ x14
∧ x15′ ≤ x16+ x17

22. y′ ≤ max(x, y)
23. x′ ≤ max(x, y) ∧ y′ ≤ max(x, y)
31. y2′ ≤ y1
32. X0′ ≤ X2+ X1× X4 ∧ X1′ ≤ max(X2, X3, X4) + X1

∧ X2′ ≤ max(X2, X3) + X1× X4
∧ X3′ ≤ max(X2, X3) + X1
∧ X4′ ≤ X1× X2× X3× X4

33. X0′ ≤ X0+ X1 ∧ X1′ ≤ X0× X1

# Benchmark bound

34. X0′ ≤ max(X0, X1) + X2× X3
∧ X1′ ≤ X1+ X2 ∧ X2′ ≤ X2+ X3

35. X1′ ≤ max(X1, X2+ X3) ∧ X2′ ≤ max(X2, X3)
∧ X4′ ≤ max(X4, X5)

36. X1′ ≤ max(X1, X4) + X2× X3
∧ X2′ ≤ max(X2, X4) + X3
∧ X3′ ≤ max(X3, X4)

37. X1′ ≤ max(X1, X4) + X2× X3
∧ X2′ ≤ max(X2, X4) + X3

38. X1′ ≤ max(X1, X2+ X3+ X4+ X5)
∧ X2′ ≤ max(X2, X3+ X4+ X5)
∧ X3′ ≤ max(X3, X4+ X5)
∧ X4′ ≤ max(X4, X5)

39. X1′ ≤ X1+ X2× X3× X4× X5
∧ X2′ ≤ max(X2, X1+ X3+ X4+ X5)
∧ X3′ ≤ max(X3, X1+ X4+ X5) + X2
∧ X4′ ≤ max(X4, X1+ X5) + X2
∧ X6′ ≤ max(X6, X1+ X3+ X4+ X5) + X2

40. X0′ ≤ X0+ X1 ∧ X1′ ≤ X1+ X0
41. i′ ≤ i+ k
43. flag′ ≤ 0
44. X2′ ≤ max(X2, X1) ∧ X3′ ≤ max(X3, X1+ X2)
46. X2′ ≤ max(X2, X1) ∧ X3′ ≤ X1+ X2+ X3
47. y′ ≤ max(x, y)
48. x′ ≤ max(x, y)
49. y2′ ≤ max(y2, y1) ∧ r′ ≤ max(y2, y1)
50. beg′ ≤ 0 ∧ end′ ≤ 0 ∧ i′ ≤ 0
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can derive complex multivariate bounds automatically, and to present the result
of a non-deterministic computation in a digestible form. It also clarifies what the
analyzer computes and that those results are original in form.

6 Conclusion

This paper presented pymwp, its recent technical advancements, and evaluated its
performance. Our tool reasons efficiently about existence of the variables’ growth
bounds w.r.t. its initial value, and can be paired with other tools for extended
verification and compound analyses. Possible enhancements of the tool involve
extending it to support richer syntax, and exploring the space of discovered
bounds. For example, we could investigate whether constraints such as “Is there a
bound where this particular variable growth linearly?” can be satisfied. Another
open question is to identify distinct bounds.

Beyond enhancements of pymwp, several future directions and extended
applications can follow. Perhaps the most interesting of those is to formally verify
the analysis technique, and work is already underway in that direction [3]. Since
the analysis does not require much structure from an input program, it could be
useful for analyzing intermediate representations during compilation. It could
also find use cases in restricted domain-specific languages, and resource-restricted
hardware, to establish guarantees of their runtime behavior. Long term, the fast
compositional analysis could also be useful to construct IDE plug-ins to provide
low-latency feedback to programmers.

Acknowledgments The authors wish to express their gratitude to the reviewers
for their thoughtful comments, and to Antonio Flores Montoya, for the preparation
and public sharing of his PhD thesis experimental evaluation resources [11].
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