
Certifying Implicit Computational Complexity

Neea Rusch
School of Computer and Cyber Sciences

Augusta University

PhD Research Proposal Presentation
16 December 2022

Resource bounds impact program correctness.

Excessive resource usage makes programs fail.

1003 (1 million)

2000003 (8 quadrillion)

Wish List

• Automatic analysis of complexity properties

• Ability to optimize resource usage

• Strong guarantees of correctness

4 / 42

Hypothesis

Implicit Computational Complexity (ICC) provides new
approaches to automatic complexity analysis and can resolve

certain limitations.

5 / 42

Presentation Outline

□ Background

Research directions:

□ 1. mwp-Analysis Improvement and Implementation

□ 2. Distributing and Parallelizing Non-canonical Loops

□ 3. Formally Verified Complexity

6 / 42

Implicit Computational Complexity (ICC)

Let L be a programming language, C a complexity class, and [[p]] the function
computed by program p.

Find a restriction R ⊆ L, such that the following equality holds:

{[[p]] | p ∈ R} = C

The variables L, C, and R are the parameters that vary greatly between different
ICC systems1.

1Romain Péchoux. Complexité implicite : bilan et perspectives. Habilitation à Diriger des Recherches
(HDR). 2020. url: https://hal.univ-lorraine.fr/tel-02978986.

7 / 42

https://hal.univ-lorraine.fr/tel-02978986

Analyzing Variable Value Growth

For a deterministic imperative program,
is the growth of input variable values polynomially bounded?

Example

C
′ ≡ X1 := X2 + X3;

X1 := X1 + X1

C
′′ ≡ X1 := 1;

loop X2 { X1 := X1 + X1 }

[[C
′
]](x1,x2,x3 ⇝ x′

1,x
′
2,x

′
3) [[C

′′
]](x1,x2 ⇝ x′

1,x
′
2)

implies x′
1 ≤ 2x2 + 2x3 implies x′

1 ≤ 2x2 and x′
2 ≤ x2.

and x′
2 ≤ x2 and x′

3 ≤ x3.

8 / 42

mwp-Flow Analysis2

• Tracks how each variable depends on other variables.

• Flows characterize dependencies:
0 – no dependency
m – maximal weaker

w – weak polynomial
p – polynomial stronger

• Apply inference rules to program statements.

• Collect analysis result in a matrix.

2Neil D. Jones and Lars Kristiansen. “A flow calculus of mwp-bounds for complexity analysis”. In: ACM
Trans. Comput. Log. 10.4 (Aug. 2009), 28:1–28:41. doi: 10.1145/1555746.1555752.

9 / 42

https://doi.org/10.1145/1555746.1555752

mwp-Analysis Example

void main(int X1, int X2, int X3){

if (X1 < X2) {

X3 = X1 + X1;

}

else {

X3 = X3 + X2;

}

while (X1 < 0){

X1 = X2 + X3;

}

}

X1 X2 X3

X1 m 0 0
X2 0 m 0
X3 0 0 m

10 / 42

mwp-Analysis Example

void main(int X1, int X2, int X3){

if (X1 < X2) {

X3 = X1 + X1;

}

else {

X3 = X3 + X2;

}

while (X1 < 0){

X1 = X2 + X3;

}

}

X1 X2 X3

X1 m 0 p
X2 0 m 0
X3 0 0 m

10 / 42

mwp-Analysis Example

void main(int X1, int X2, int X3){

if (X1 < X2) {

X3 = X1 + X1;

}

else {

X3 = X3 + X2;

}

while (X1 < 0){

X1 = X2 + X3;

}

}

X1 X2 X3

X1 m 0 0
X2 0 m p
X3 0 0 m

10 / 42

mwp-Analysis Example

void main(int X1, int X2, int X3){

if (X1 < X2) {

X3 = X1 + X1;

}

else {

X3 = X3 + X2;

}

while (X1 < 0){

X1 = X2 + X3;

}

}

X1 X2 X3

X1 m 0 p
X2 0 m p
X3 0 0 m

10 / 42

mwp-Analysis Example

void main(int X1, int X2, int X3){

if (X1 < X2) {

X3 = X1 + X1;

}

else {

X3 = X3 + X2;

}

while (X1 < 0){

X1 = X2 + X3;

}

}

X1 X2 X3

X1 m 0 0
X2 w m 0
X3 w 0 m

10 / 42

mwp-Analysis Example

void main(int X1, int X2, int X3){

if (X1 < X2) {

X3 = X1 + X1;

}

else {

X3 = X3 + X2;

}

while (X1 < 0){

X1 = X2 + X3;

}

}

X1 X2 X3

X1 m 0 0
X2 w m 0
X3 w 0 m

= M∗

Side condition: ∀i,M∗
ii = m and ∀i, j,M∗

ij ̸= p
10 / 42

mwp-Analysis Example

void main(int X1, int X2, int X3){

if (X1 < X2) {

X3 = X1 + X1;

}

else {

X3 = X3 + X2;

}

while (X1 < 0){

X1 = X2 + X3;

}

}

X1 X2 X3

X1 p 0 p
X2 p m p
X3 w 0 m

= C;C

10 / 42

mwp-Analysis Example - Final Result

void main(int X1, int X2, int X3){

if (X1 < X2) {

X3 = X1 + X1;

}

else {

X3 = X3 + X2;

}

while (X1 < 0){

X1 = X2 + X3;

}

}

X1 X2 X3

X1 p 0 p
X2 p m p
X3 w 0 m

10 / 42

mwp-Analysis Soundness

For program C and mwp-matrix M ,

• ⊢ C : M means calculus assigns matrix M to command C.

• C is derivable if the calculus assigns at least one matrix to it.

• Relation ⊢ C : M holds iff there exists a derivation in the calculus.

Theorem (Soundness3)

⊢ C : M implies ⊨ C : M .

3Jones and Kristiansen, “A flow calculus of mwp-bounds for complexity analysis”, p. 11.
11 / 42

Presentation Outline

✓ Background

Research directions:

□ 1. mwp-Analysis Improvement and Implementation

□ 2. Distributing and Parallelizing Non-canonical Loops

□ 3. Formally Verified Complexity

12 / 42

mwp-Analysis Improvement and Implementation

The mwp-analysis has many useful properties:

• Compositional method

• Termination, loop condition are abstracted

• Language agnostic syntax

• Multivariate result, etc.

But is it really automatable?

13 / 42

Several Open Questions

• Powerfulness – what is the size of the class programs that can be analyzed?

• Richness – can it be extended to analyze more commands?

• Utility – what else can be done with this analysis?

14 / 42

Several Practical Limitations

• How to handle analysis failure?

• How to manage nondeterminism of rules?

• How to efficiently determine if program C is derivable?

15 / 42

mwp-Analysis Improvement and Implementation – Approach

• Adjusted the mathematical framework to have deterministic rules.

• Extended the supported syntax with function calls, incl. recursion.

• Created a static analyzer implementation4 and measured its performance.

• Split computation into two phases: existence of bound vs. calculating it.

• Developed an efficient evaluation strategy.

4Clément Aubert et al. pymwp: A Tool for Guaranteeing Complexity Bounds for C Programs. Version 1.0.
Oct. 2022. doi: 10.5281/zenodo.7159134. url: https://github.com/statycc/pymwp.

16 / 42

https://doi.org/10.5281/zenodo.7159134
https://github.com/statycc/pymwp

mwp-Analysis Improvement and Implementation – Example

int foo(int x, int y){

while (0){x=y+y;}

}

[x y

x m+∞δ(0, 0) +∞δ(1, 0) 0
y ∞δ(0, 0) +∞δ(1, 0) + wδ(2, 0) m

]

https://statycc.github.io/pymwp/demo/#basics_while_2.c
17 / 42

https://statycc.github.io/pymwp/demo/#basics_while_2.c

Publications

Aubert, Clément, Thomas Rubiano, Neea Rusch, and Thomas Seiller. “mwp-Analysis
Improvement and Implementation: Realizing Implicit Computational Complexity”. In:
FSCD 2022. Vol. 228. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022, 26:1–26:23. doi: 10.4230/LIPIcs.FSCD.2022.26.

— .“pymwp: A Tool for Guaranteeing Complexity Bounds for C Programs”. Submitted
to 29th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). 2023.

Aubert, Clément, Thomas Rubiano, Neea Rusch, and Thomas Seiller. pymwp: A Tool for
Guaranteeing Complexity Bounds for C Programs. Version 1.0. Oct. 2022. doi:
10.5281/zenodo.7159134. url: https://github.com/statycc/pymwp.

18 / 42

https://doi.org/10.4230/LIPIcs.FSCD.2022.26
https://doi.org/10.5281/zenodo.7159134
https://github.com/statycc/pymwp

Timeline: mwp-Analysis Improvement and Implementation

2021 2022

THEORETICAL WORK

IMPLEMENTATION V1.0 V2.0

FSCD

TACAS

Paper (submission) Presentation Artifact

19 / 42

Presentation Outline

✓ Background

Research directions:

✓ 1. mwp-Analysis Improvement and Implementation

□ 2. Distributing and Parallelizing Non-canonical Loops

□ 3. Formally Verified Complexity

20 / 42

New and legacy code needs to be transformed to utilize multicore architectures.

⇓

Idea: find an automatic way to reduce program execution time by parallelization.

21 / 42

Distributing and Parallelizing Non-canonical Loops

We present a program transformation technique to distribute loops.
Enables discovery of parallelization potential in previously uncovered cases.

High-level idea

while(t[i] != j){

s1[i] = j*j;

s2[i] = 1/j;

i++;

}

⇒

parallel

while(t[i1] != j){

s1[i1] = j*j; i1++;

}

parallel

while(t[i2] != j){

s2[i2] = 1/j; i2++;

}

22 / 42

Loop Fission Algorithm

Our algorithm performs loop fission transformation.

• Uses ICC-inspired data-flow analysis to analyze dependencies.

• Establishes cliques between statements.

• Split independent cliques into multiple loops.

23 / 42

Loop Fission Algorithm Features

• Applicable even if iteration space is unknown.

• Loop-agnostic: for, while, do...while; complex conditions, etc.

• Can be mapped to any imperative language (high level . . . IR)

24 / 42

Other Contributions

• Transformation correctness proof.

• Experimental evaluation that measures expected gain.

25 / 42

Publications

Aubert, Clément, Thomas Rubiano, Neea Rusch, and Thomas Seiller. “Distributing and
Parallelizing Non-canonical Loops”. To appear in Verification, Model Checking, and
Abstract Interpretation (VMCAI). 2023.

Aubert, Clément, Thomas Rubiano, Neea Rusch, and Thomas Seiller. Distributing and
Parallelizing Non-canonical Loops – Artifact. Version 1.0. Sept. 2022. doi:
10.5281/zenodo.7080145. url: https://github.com/statycc/loop-fission.

26 / 42

https://doi.org/10.5281/zenodo.7080145
https://github.com/statycc/loop-fission

Timeline: Distributing and Parallelizing Non-canonical Loops

2021 2022 2023

THEORETICAL WORK

IMPLEMENTATION B.MARKS

VMCAI

Paper (submission) Presentation Artifact

27 / 42

Presentation Outline

✓ Background

Research directions:

✓ 1. mwp-Analysis Improvement and Implementation

✓ 2. Distributing and Parallelizing Non-canonical Loops

□ 3. Formally Verified Complexity

28 / 42

Recall mwp-analysis soundness theorem:

⊢ C : M implies ⊨ C : M .

29 / 42

Proving Programs

• Prove that some property holds with the strongest possible guarantee.

• Done using an interactive theorem prover.

• Construct rigorous logical arguments.

• Machine-checkable for correctness.

30 / 42

Trade-off

Mechanical proofs require specifying every detail (slow, tedious).

⇕

Get the strongest possible guarantee of correctness.

31 / 42

My Goal

Prove the mwp-analysis technique.

• As defined in the original paper.

• Using the Coq proof assistant.

32 / 42

Steps - 1 of 4

Define the programming language under analysis.

• Simple, memory-less imperative language.

• Syntax: variables, arithmetic and boolean exp., commands.

33 / 42

Steps - 2 of 4

Define the mathematical machinery.

• Need e.g., matrices, semi-ring.

• Other related mathematical concepts e.g., honest polynomial.

34 / 42

Steps - 3 of 4

Implementing the typing system.

• Define the flow calculus rules.

• Define a typing system.

35 / 42

Steps - 4 of 4

Prove the paper lemmas and theorems.

• There are 8 lemmas and 7 theorems.

• The soundness theorem, ⊢ C : M implies ⊨ C : M , is essential.

• “These proofs are long, technical and occasionally highly nontrivial.”5

5Jones and Kristiansen, “A flow calculus of mwp-bounds for complexity analysis”, p. 2.
36 / 42

Expected Main Result

A certified complexity analysis technique.

• Proves a positive result obtained by analysis is correct.

• Establishes certified “growth bound” on input variable values.

37 / 42

Timeline and Progress

Step 1 Step 2 Step 3 Step 4

LANGUAGE

MATRICES

TYPE SYSTEM

PROOFS

SF - V1 SF - V2

MATH COMP

FRAP BOOK

J&K PAPER

Here Proof task Study resource

38 / 42

Possible Future Directions

Many directions can follow from the correctness proof
e.g., a formally verified static analyzer.

• Adjusting analysis makes it practical and fast.

• Proof would show the original technique is correct, but not fast.

• It should be possible to combine those two results.

39 / 42

Preliminary Papers

Aubert, Clément, Thomas Rubiano, Neea Rusch, and Thomas Seiller. “Certifying
Complexity Analysis”. At the Ninth International Workshop on Coq for Programming
Languages (CoqPL). 2023.

Rusch, Neea. “Formally Verified Resource Bounds Through Implicit Computational
Complexity”. In: Companion Proceedings of the 2022 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and Applications: Software for
Humanity. SPLASH Companion 2022. Association for Computing Machinery, 2022.
doi: 10.1145/3563768.3565545.

40 / 42

https://doi.org/10.1145/3563768.3565545

Presentation Outline

✓ Background

Research directions:

✓ 1. mwp-Analysis Improvement and Implementation

✓ 2. Distributing and Parallelizing Non-canonical Loops

✓ 3. Formally Verified Complexity

41 / 42

Summary

Implicit Computational Complexity (ICC) provides new approaches to automatic
complexity analysis and can resolve certain limitations.

✓ mwp-Analysis Improvement and Implementation

✓ Distributing and Parallelizing Non-canonical Loops

→ Formally Verified Complexity (current)

Many other directions can follow e.g., certified static analyzer for complexity.

42 / 42

mwp-Flow Analysis: Program Syntax

Variable X1 | X2 | X3 | . . .

Expression X | e + e | e * e

Boolean Exp. e = e, e < e, etc.

Commands skip | X := e | C;C | loop X {C} |
if b then C else C | while b do {C}

mwp-Flow Analysis: Inference Rules

E1
⊢ Xi : {mi }

⊢ C1 : M1 ⊢ C2 : M2
I⊢ if b then C1 else C2 : M1 ⊕M2

E2
⊢ e : {wi | Xi ∈ var(e)}

⊢ Xi : V1 ⊢ Xj : V2
E3

⊢ Xi⋆Xj : pV1 ⊕ V2

⊢ Xi : V1 ⊢ Xj : V2
E4⊢ Xi⋆Xj : V1 ⊕ pV2

⊢ e : V
A

⊢ Xj = e : 1
j←− V

⊢ C : M∀i,M∗
ii = m L

⊢ loop Xl {C} : M∗ ⊕ {pl→ j | ∃i,M∗
ij = p}

⊢ C1 : M1 ⊢ C2 : M2
C

⊢ C1; C2 : M1 ⊗M2

⊢ C : M∀i,M∗
ii = m and ∀i, j,M∗

ij ̸= p W
⊢ while b do {C} : M∗

References

Jones, Neil D. and Lars Kristiansen. “A flow calculus of mwp-bounds for complexity
analysis”. In: ACM Trans. Comput. Log. 10.4 (Aug. 2009), 28:1–28:41. doi:
10.1145/1555746.1555752.

Péchoux, Romain. Complexité implicite : bilan et perspectives. Habilitation à Diriger des
Recherches (HDR). 2020. url: https://hal.univ-lorraine.fr/tel-02978986.

https://doi.org/10.1145/1555746.1555752
https://hal.univ-lorraine.fr/tel-02978986

	References
	References
	References
	References
	References

