An Information Flow Calculus for Non-Interference

Clément Aubert and Neea Rusch
Augusta University, United States

The 19th Workshop on Programming Languages
and Analysis for Security (PLAS 2024)

14 October 2024

Motivation: Guarantee Runtime Properties

Idea: use programming languages to guarantee runtime properties
= what(ever) can be expressed is known to be satisfactory

... by applying techniques from implicit computational complexity.

An Information Flow Calculus for Non-Interference Clément Aubert & Neea Rusch

Implicit Computational Complexity (ICC)

Let L be a programming language, C' a complexity class, and [p] the function
computed by program p.

Find a restriction R C L, such that the following equality holds:
{lpllpeRr}=C

The variables L, C, and R are the parameters that vary greatly between different
ICC systems!.

1Romain Péchoux. Complexité implicite : bilan et perspectives. Habilitation a Diriger des Recherches (HDR). 2020. URL:
https://hal.univ-lorraine.fr/tel-02978986.

Clément Aubert & Neea Rusch

An Information Flow Calculus for Non-Interference

https://hal.univ-lorraine.fr/tel-02978986

Characteristics of ICC Techniques

® Many advantaged for performing program analysis
e.g., static, automatic, compositional, sound guarantees

® Adjustable techniques with representational strengths
e.g., require little structure, bypass difficulties, program abstractions for free

® Trade guarantees for precision and expressive power:
Approximative results, limited syntax

Clément Aubert & Neea Rusch

An Information Flow Calculus for Non-Interference

Applications

Guaranteeing resource usage:
Static analysis of complexity

Analyzing and guaranteeing other semantic properties:
Compiler optimizations
Invariant inference

O Security properties?

An Information Flow Calculus for Non-Interference Clément Aubert & Neea Rusch

Implicit Complexity Meets Security

SAFE programs?
Security type system modified to track data-size increase
= characterization of polynomial time functions.

Stratified programs®

Security type system + heap memory restriction + shape analysis
= more expressive characterization of P-time functions.

2 Jean-Yves Marion. “A Type System for Complexity Flow Analysis”. In: 2011 IEEE 26th Annual Symposium on Logic in Computer Science.
2011, pp. 123-132. por: 10.1109/LICS.2011.41.

3Emmanuel Hainry and Romain Péchoux. “A General Noninterference Policy for Polynomial Time". In: Proc. ACM Program. Lang. 7.POPL
(2023), pp. 806-832. DOI: 10.1145/3571221.

An Information Flow Calculus for Non-Interference Clément Aubert & Neea Rusch

https://doi.org/10.1109/LICS.2011.41
https://doi.org/10.1145/3571221

Implicit Complexity Meets Security

security —— implicit complexity

An Information Flow Calculus for Non-Interference Clément Aubert & Neea Rusch

Implicit Complexity Meets Security

2
security ¢——— implicit complexity

An Information Flow Calculus for Non-Interference Clément Aubert & Neea Rusch

TODO: Plan

1. Define programming language and semantics
2. Take an ICC-based data-flow calculus
3. Adjust calculus to track a security property (non-interference)

4. Show useful applications

An Information Flow Calculus for Non-Interference Clément Aubert & Neea Rusch

Imperative Language

vars= i | ... |t]... | x| ... | varlexp] (Variable)
exp == var | val | op(exp,...,exp) (Expression)
com = var < exp | skip |

if exp then com else com |
while exp do com | com;com (Command)

Semantics as expected from syntax; a program is a sequence of commands.

An Information Flow Calculus for Non-Interference Clément Aubert & Neea Rusch

Non-interfering Programs

Definition: Non-interference

We let SC be an information flow policy lattice, and ¢ the level assignment that
assigns to each variable x its security class (or level) ¢(x) € SC. A command C is
non-interfering for ¢ if for all level [€ SC, and all variable values lists v7 and v2,

n :f< U3, C[v] — U_{],C[U_é — v_;] — v_i :f< v_é

Informally: changing the value received by higher-level variables does not impact the
values of lower-level variables at any program state.

4
1<

after executing all the commands in C[], x; contains the value v/, for 1 < i < n.
2 i

Two values lists & and v/ are up-to | equivalent & =¢_ v’ iff L(x;)) Kl = v; = ug, and C[¥ — vq’] means C[7] terminates and

An Information Flow Calculus for Non-Interference Clément Aubert & Neea Rusch

Information Flow Calculus

We track data-flow dependencies between variables in expressions and commands;

tagging them as modiified by (out), used by (in), or occurring (occ).

The variables occurring in expression e:

Occ(x) =x Occ(t[e]l) =t U Occ(e)

Occ(val) =) Occ(op(er,...,ep)) = Occ(e) U--- U Occ(eyp)

An Information Flow Calculus for Non-Interference Clément Aubert & Neea Rusch 10 /20

Information Flow Calculus

Command C Out (C) In (C) Occ (C) = Out (C) UIn(C)
x=e x Occ(e) x UOcc(e)
tleil=es t Occ(eq) U Occe(ez) t UOcc(er) U Occ(e2)
skip 0 0 0
if e then C; else Co Out(Cy) UOut(C2) Occ(e) UIn(Cy) UIn(Cy) Oce(e) U Oce(Cy) U Oce(Ca)
while e do C Out(C) Occ(e) UIn(C) Occ(e) U Oce(C)
C1;Co Out(Cy) U Out(Cz) In(Cy) UIn(Cy) Occ(Cy) U Oce(Ca)

The set of variables modified by (resp. used by, occurring in) command C.

An Information Flow Calculus for Non-Interference Clément Aubert & Neea Rusch

11/20

Security Flow Matrix (SFM)

Given command C with n variables, a security flow matrix, M(C), is an n x n
matrix of coefficients (-, 8) tracking information flow.
y

M(C)(x,y) denotes the coefficient at row x and column y.

C has a violation if there exists x and y such that
M(C)(x,y) = & and £(y) < {(x).

Clément Aubert & Neea Rusch 12 /20

An Information Flow Calculus for Non-Interference

Security Flow Matrix: Examples

C Out (C), In (C) M(C) Violation(s)
Out(C) = {w} v
w=23 In(c) = W () None
Out(C) = {x} o
X:y n(e) = {} Y(o > =
w t x
B Out(c) = {w} e If £(w) < £(t)
L e pa ;(; A) or £(w) < {(x)
t i u j
B N If 6(t) < £(1),
di=uiy OO e or £(t) < (w)
In(C) = {i,u,j} 3‘ : or £(t) < £(3).

An Information Flow Calculus for Non-Interference Clément Aubert & Neea Rusch 13/20

Derivation Example |

if (h==0) then y=1 else skip; // Ci1
if (y==0) then z=1 else y=z // C2

An Information Flow Calculus for Non-Interference Clément Aubert & Neea Rusch 14 /20

Derivation Example Il

while(t[i]!=3){
s1lil=j*j;
s2[il=1/7;
i++

An Information Flow Calculus for Non-Interference

sl
s2

j

sl

R N 4

EE N N 4

high

low

Clément Aubert & Neea Rusch

Derivation Example Il

t i j sl s2 organization
while (¢ [il!=j){ vt/ e ¢ o AN
s1[il=j*j; j 0 : : research funding
s2[il=1/3; al. .. NS
P4+ o\l . public

Clément Aubert & Neea Rusch

An Information Flow Calculus for Non-Interference

TODO: Plan Progress

K]

Define programming language and semantics

Take an ICC-based data-flow calculus

8 &

Adjust calculus to track a security property (non-interference)

(]

Show useful applications

An Information Flow Calculus for Non-Interference Clément Aubert & Neea Rusch

Practical Advancements and Discoveries

® Prototype implementation to show the ideas is efficient in practice
® Language is extensible to cover functions and OOP
[]

Adjustable mathematical framework

Complementary to type system-based analysis

An Information Flow Calculus for Non-Interference Clément Aubert & Neea Rusch 17 /20

Potential Applications

Idea #1: Taint-analysis or program analysis of noninterference

Given a SFM, security policy, and source and sink variables: find a non-interfering
security class assignment if exists, or indicate points of failure.

(this idea has challenges)

An Information Flow Calculus for Non-Interference Clément Aubert & Neea Rusch 18 /20

Potential Applications

Idea #2: Miscompilation or compiler-introduced issue detection

Map the analysis syntax to high-level and low-level programming language,
compare two SFMs to detect issues.

For Java, use a bytecode normalizer* to remove bytecode differences.

4Stefan et al. Schott. “Java Bytecode Normalization for Code Similarity Analysis”. In: 38th European Conference on Object-Oriented
Programming (ECOOP 2024). 2024, 37:1-37:29. poOI: 10.4230/LIPIcs.ECO0P.2024.37.

An Information Flow Calculus for Non-Interference Clément Aubert & Neea Rusch

https://doi.org/10.4230/LIPIcs.ECOOP.2024.37

Discussion Topics

The Information Flow Calculus — benefits or challenges

® Abstracts the analyzed program
® Static and automatic, no annotations needed etc.
® Flexible: adjustable to increase precision or track other security properties

Utility and potential applications — especially beyond ideas presented so far

e Can target different language syntax and contexts

Clément Aubert & Neea Rusch

An Information Flow Calculus for Non-Interference

