An Information Flow Calculus for Non-Interference

Clément Aubert and **Neea Rusch** Augusta University, United States

The 19th Workshop on Programming Languages and Analysis for Security (PLAS 2024)

14 October 2024

Motivation: Guarantee Runtime Properties

Idea: use *programming languages* to guarantee runtime properties ⇒ what(ever) can be expressed is known to be satisfactory

... by applying techniques from *implicit computational complexity*.

Implicit Computational Complexity (ICC)

Let L be a programming language, C a complexity class, and $[\![p]\!]$ the function computed by program p.

Find a restriction $R \subseteq L$, such that the following equality holds:

$$\{[\![p]\!]\mid p\in R\}=C$$

The variables L, C, and R are the parameters that vary greatly between different ICC systems¹.

¹Romain Péchoux. Complexité implicite: bilan et perspectives. Habilitation à Diriger des Recherches (HDR). 2020. URL: https://hal.univ-lorraine.fr/tel-02978986.

Characteristics of ICC Techniques

- Many advantaged for performing program analysis e.g., static, automatic, compositional, sound guarantees
- Adjustable techniques with representational strengths
 e.g., require little structure, bypass difficulties, program abstractions for free
- Trade guarantees for precision and expressive power: Approximative results, limited syntax

Applications

Guaranteeing resource usage:

☑ Static analysis of complexity

Analyzing and guaranteeing other semantic properties:

- ☑ Compiler optimizations
- ☑ Invariant inference
- ☐ Security properties?

Implicit Complexity Meets Security

SAFE programs²

Security type system modified to track data-size increase

 \Rightarrow characterization of polynomial time functions.

Stratified programs 3

Security type system + heap memory restriction + shape analysis

⇒ more expressive characterization of P-time functions.

² Jean-Yves Marion. "A Type System for Complexity Flow Analysis". In: 2011 IEEE 26th Annual Symposium on Logic in Computer Science. 2011, pp. 123–132. DOI: 10.1109/LICS.2011.41.

³Emmanuel Hainry and Romain Péchoux. "A General Noninterference Policy for Polynomial Time". In: *Proc. ACM Program. Lang.* 7.POPL (2023), pp. 806–832. DOI: 10.1145/3571221.

Implicit Complexity Meets Security

security — implicit complexity

Implicit Complexity Meets Security

TODO: Plan

- 1. Define programming language and semantics
- 2. Take an ICC-based data-flow calculus
- 3. Adjust calculus to track a security property (non-interference)
- 4. Show useful applications

Imperative Language

```
var := i \mid \dots \mid t \mid \dots \mid x_1 \mid \dots \mid var[exp] (Variable)
exp := var \mid val \mid op(exp, \dots, exp) (Expression)
com := var \leftarrow exp \mid skip \mid
if exp then com else com \mid
while exp do com \mid com; com (Command)
```

Semantics as expected from syntax; a program is a sequence of commands.

Non-interfering Programs

Definition: Non-interference

We let SC be an *information flow policy* lattice, and ℓ the level assignment that assigns to each variable \mathbf{x} its security class (or *level*) $\ell(\mathbf{x}) \in SC$. A command C is non-interfering for ℓ if for all level $\ell \in SC$, and all variable values lists $\vec{v_1}$ and $\vec{v_2}$,

$$\vec{v_1} =_l^{\ell \leqslant} \vec{v_2}, \mathbf{C}[\vec{v_1} \rightarrow \vec{v_1'}], \mathbf{C}[\vec{v_2} \rightarrow \vec{v_2'}] \implies \vec{v_1'} =_l^{\ell \leqslant} \vec{v_2'}$$

Informally: changing the value received by higher-level variables does not impact the values of lower-level variables at any program state.

Two values lists \vec{v} and $\vec{v'}$ are up-to l equivalent $\vec{v} = \stackrel{l}{l_{\leq}} \vec{v'}$ iff $\ell(\mathbf{x}_i) \leqslant l \implies v_i = v'_i$, and $\mathbf{C}[\vec{v} \to \vec{v'}]$ means $\mathbf{C}[\vec{v}]$ terminates and after executing all the commands in $\mathbf{C}[\vec{v}]$, \mathbf{x}_i contains the value v'_i , for $1 \leqslant i \leqslant n$.

Information Flow Calculus

We track data-flow dependencies between variables in expressions and commands; tagging them as *modified by* (out), *used by* (in), or *occurring* (occ).

The variables occurring in expression e:

$$\begin{aligned} \operatorname{Occ}(\textbf{x}) = \textbf{x} & \operatorname{Occ}(\textbf{t[e]}) = \textbf{t} \cup \operatorname{Occ}(\textbf{e}) \\ \\ \operatorname{Occ}(\textit{val}) = \emptyset & \operatorname{Occ}(\texttt{op(e}_1, \ldots, \texttt{e}_n)) = \operatorname{Occ}(\texttt{e}_1) \cup \cdots \cup \operatorname{Occ}(\texttt{e}_n) \end{aligned}$$

Information Flow Calculus

Command C	Out (C)	${ m In}\left({ m ext{C}} ight)$	$\operatorname{Occ}\left(\mathtt{C}\right)=\operatorname{Out}\left(\mathtt{C}\right)\cup\operatorname{In}\left(\mathtt{C}\right)$
x=e	x	$\mathrm{Occ}(e)$	$\mathtt{x} \cup \mathrm{Occ}(\mathtt{e})$
$\texttt{t[e}_1]\!=\!\texttt{e}_2$	t	$\mathrm{Occ}(\mathtt{e}_1) \cup \mathrm{Occ}(\mathtt{e}_2)$	$\mathtt{t} \cup \mathrm{Occ}(\mathtt{e}_1) \cup \mathrm{Occ}(\mathtt{e}_2)$
skip	Ø	Ø	Ø
$\mathtt{if}\ \mathtt{e}\ \mathtt{then}\ \mathtt{C}_1\ \mathtt{else}\ \mathtt{C}_2$	$\operatorname{Out}(\mathtt{C}_1) \cup \operatorname{Out}(\mathtt{C}_2)$	$\mathrm{Occ}(\mathtt{e}) \cup \mathrm{In}(\mathtt{C}_1) \cup \mathrm{In}(\mathtt{C}_2)$	$\operatorname{Occ}(\mathtt{e}) \cup \operatorname{Occ}(\mathtt{C}_1) \cup \operatorname{Occ}(\mathtt{C}_2)$
while e do C	$\operatorname{Out}(\mathtt{C})$	$\mathrm{Occ}(\mathtt{e}) \cup \mathrm{In}(\mathtt{C})$	$\mathrm{Occ}(\mathtt{e}) \cup \mathrm{Occ}(\mathtt{C})$
$\mathtt{C}_1;\mathtt{C}_2$	$\operatorname{Out}(\mathtt{C}_1) \cup \operatorname{Out}(\mathtt{C}_2)$	$\operatorname{In}(\mathtt{C}_1) \cup \operatorname{In}(\mathtt{C}_2)$	$\mathrm{Occ}(\mathtt{C}_1) \cup \mathrm{Occ}(\mathtt{C}_2)$

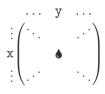
The set of variables modified by (resp. used by, occurring in) command C.

Security Flow Matrix (SFM)

Given command C with n variables, a security flow matrix, $\mathbb{M}(C)$, is an $n \times n$ matrix of coefficients (\cdot, \bullet) tracking information flow.

 $\mathbb{M}(\mathtt{C})(\mathtt{x},\mathtt{y})$ denotes the coefficient at $row~\mathtt{x}$ and $column~\mathtt{y}.$

C has a *violation* if there exists x and y such that $\mathbb{M}(C)(x, y) = \mathbf{b}$ and $\ell(y) < \ell(x)$.



Security Flow Matrix: Examples

C	$\operatorname{Out}\left(\mathtt{C}\right),\operatorname{In}\left(\mathtt{C}\right)$	M(C)	Violation(s)
w = 3	$\operatorname{Out}(\mathtt{C}) = \{\mathtt{w}\}$ $\operatorname{In}(\mathtt{C}) = \emptyset$	$\mathtt{w} \; \left(\begin{smallmatrix} \mathtt{w} \\ \cdot \end{smallmatrix} \right)$	None
x = y	$\operatorname{Out}(\mathtt{C}) = \{\mathtt{x}\}$ $\operatorname{In}(\mathtt{C}) = \{\mathtt{y}\}$	$ \begin{array}{ccc} x & y \\ x & \cdot \\ y & \bullet \\ \end{array} $	If $\ell(\mathtt{x}) < \ell(\mathtt{y})$
$\mathtt{w}=\mathtt{t}[\mathtt{x}+1]$	$\operatorname{Out}(\mathtt{C}) = \{\mathtt{w}\}$ $\operatorname{In}(\mathtt{C}) = \{\mathtt{t},\mathtt{x}\}$	w t x w (· · · ·) t (♠ · · ·)	If $\ell(\mathtt{w}) < \ell(\mathtt{t})$ or $\ell(\mathtt{w}) < \ell(\mathtt{x})$
t[i] = u + j	$\begin{aligned} \operatorname{Out}(\mathtt{C}) &= \{\mathtt{t}\} \\ \operatorname{In}(\mathtt{C}) &= \{\mathtt{i},\mathtt{u},\mathtt{j}\} \end{aligned}$	t i u j t (· · · · ·) i ($\begin{split} &\text{If } \ell(\mathtt{t}) < \ell(\mathtt{i}),\\ &\text{or } \ell(\mathtt{t}) < \ell(\mathtt{u}),\\ &\text{or } \ell(\mathtt{t}) < \ell(\mathtt{j}). \end{split}$

Derivation Example I

```
if (h==0) then y=1 else skip; // C1 if (y==0) then z=1 else y=z // C2
```

$$\frac{\overline{h=0:\left(\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)}}{C1:\left(\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)} \quad Cond \qquad \frac{\overline{y=0:\left(\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)}}{C2:\left(\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array}\right)} \quad Cond \qquad Cond$$

$$C1;C2:\left(\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \end{array}\right) \quad Comp$$

Derivation Example II

```
while(t[i]!=j){
   s1[i]=j*j;
   s2[i]=1/j;
   i++
}
```


Derivation Example II

```
while(t[i]!=j){
   s1[i]=j*j;
   s2[i]=1/j;
   i++
}
```


TODO: Plan Progress

- Define programming language and semantics
- ☑ Take an ICC-based data-flow calculus
- ☑ Adjust calculus to track a security property (non-interference)
- ☐ Show useful applications

Practical Advancements and Discoveries

- Prototype implementation to show the ideas is efficient in practice
- Language is extensible to cover functions and OOP
- Adjustable mathematical framework
- Complementary to type system-based analysis

Potential Applications

Idea #1: Taint-analysis or program analysis of noninterference

Given a SFM, security policy, and source and sink variables: find a non-interfering security class assignment if exists, or indicate points of failure.

(this idea has challenges)

Potential Applications

Idea #2: Miscompilation or compiler-introduced issue detection

Map the analysis syntax to high-level and low-level programming language, compare two SFMs to detect issues.

For Java, use a bytecode normalizer⁴ to remove bytecode differences.

⁴Stefan et al. Schott. "Java Bytecode Normalization for Code Similarity Analysis". In: 38th European Conference on Object-Oriented Programming (ECOOP 2024). 2024, 37:1–37:29. DOI: 10.4230/LIPIcs.ECOOP.2024.37.

Discussion Topics

The Information Flow Calculus – benefits or challenges

- Abstracts the analyzed program
- Static and automatic, no annotations needed etc.
- Flexible: adjustable to increase precision or track other security properties

Utility and potential applications – especially beyond ideas presented so far

Can target different language syntax and contexts