Implementing the mwp-flow analysis

Neea Rusch
Augusta University

Collaborators:
C. Aubert, T. Rubiano, T. Seiller

15 November 2021

1/29

Introduction

» Our research focuses on static program analysis of imperative
programs

» Using a technique inspired by implicit computational
complexity

» This talk will demonstrate how to use this technique to
analyze variable value growth

> We have modified, extended and made this technique
practical with a working protype

2/29

Outline

1. Preliminaries:
» Implicit compulational complexity

» Static analysis
2. Theoretical foundation: mwp-analysis

3. Implemented analysis

o

. Other applications & future plans

3/29

Computational complexity

» Computational complexity evaluates resource usage of
programs, usually in terms of space and time

» Given some decision problem and a specific machine model:
how much resources are needed to solve the problem?

P> Resource usage is expressed in terms of input: more resources
are allowed as input size grows

» Decision problems can then be classfied into different
complexity classes

» Polynomial (P) class represents problems that are feasible

4/29

Implicit computational complexity (ICC)

» Implicit approach has no machine model: restrict language
instead

» Ability to represent program in the restricted syntax ensures P
bounds

» There are many approaches to ICC

» Our technique is based on “Copenhagen school” method of
data flow analysis

5/29

Static

analysis

Static analysis enable programmer to analyze program
repeatedly

Analysis performed on source code without executing the
program

Analysis can evaluate different properties, e.g. error checks,
running time, data flow

There are many ways to implement based on requirements:
abstract interpretation, data flow analysis, etc.

6/29

Static analysis of complexity

» Complexity analysis focuses on analysing running time or
memory usage

» There are two natural parts: termination analysis and data
size analysis

7/29

Static analysis of complexity

Relevant considerations:

1. Precision: interested in single or multiple complexity classes;
existence of bounds or tight bounds?

2. Source code language: imperative, declarative, specific source
code?

3. Automation: does program need annotations?

8/29

Alternative approaches

Name Language Focus

SPEED C++ time bounds
ComplexityParser | Java polytime complexity
COSTA Java Bytecode | cost and termination
RaML 0Caml resource usage, time
pymwp C (subset) value size growth

9/29

Theoretical foundation: mwp analysis

» 2008 paper by Neil Jones and Lars Kristiansen:
"A Flow Calculus of mwp-Bounds for Complexity Analysis”

» This technique is related in spirit to abstract interpretation as
it bounds transitions between states (commands), instead of
states

» "Careful and detailed analysis of the relationship between
resource requirements of computation and the way data might
flow during computation”

10/29

Syntax

Variable X1 | Xo ‘ X3 |
Expression X|e+e|ex*xe
Boolean Exp. e = e, e < e, etc.

Commands skip | X := e | C;C | loop X {C} |
if b then C else C | while b do {C}

11/29

mwp Calculus

Analyze variable value growth by:
1. Assigning a vector to each variable
2. Collecting vectors into a matrix

3. Applying derivation rules to evaluate program complexity

Flows represent quantitative information of variables on each other:

0 no dependency
maximal

weak polynomial
polynomial

T T3

12/29

Example

loop X3 {X2 = X1 + X2}

13/29

Example

loop X3 {X2 = X1 + X2}

X1+ X2: [m (E3)

14/29

Example

loop X3 {X2 = X1 + X2}

X2 = X1 + X2:

o O 3

o3

I oo
=

15/29

Example

loop X3 {X2 = X1 + X2}

m
loop X3 {X2 = X1 + X2}: (O
0

T 3 T
3 oo
~—~
=
N—r

16/29

Non-determinism & failure

Jones & Kristiansen wanted to be able to analyze as many
programs as possible:

» implemented non-deterministic derivation rules
» up to 3 rules can be applied to expressions

» single program can have multiple matrices
(program of n lines can have up to 3" derivations)

> if program analysis cannot be completed, stop and explore a
different strategy

17/29

Open questions

The original mwp-analysis was theoretical

There were open questions:

1. Can it be applied to richer languages?

2. How powerful and convenient is this technique?

18/29

Implementing mwp analysis

Two significant modifications were needed to enable
implementation:

1. Non-determinism of original analysis was impractical:
replaced by deterministic derivation rules

X2 = X1 + X1: (’(’; w(0,0) P(ld 0) W(Q,O))

» All derivations are represented in the same matrix

19/29

Implementing mwp analysis

Two significant modifications were needed to enable
implementation:
2. Changing handing of failure: introduced a new flow oo to

represent failure locally

0, m, w, p,

» Enables completing every derivation

» Provides fine-grained infromation on source of failure on
programs that do not have polynomially bounded growth

20/29

Prototype: pymwp

» Implementation of mwp-analysis on a subset of C99, in Python
» Open source: github.com/statycc/pymwp

» If analysis succeeds:

P program uses at most a polynomial amount of space

» if it terminates, it will do so in polynomial time

» |f variable grows too much, polynomial bound cannot be
guaranteed

21/29

Resolving practical inefficiencies

Representing all derivations in 1 matrix leads to exponential
growth in matrix

This issue was resolved with 2 strategies:

1. decoupling computation by using delta graph

2. compositionality enables reusing results

22/29

Resolving practical inefficiencies

Delta graph enables decoupling computation of existence of
bounds and computing its values

» Delta graph tracks all derivation branches that end in infinite
value

» Whenever a subtree cannot be completed, simplify the graph
» If no branches remain, analysis cannot be completed

» If at least one branch remains, it is possible to compute actual
bounds

23/29

Resolving practical inefficiencies

Compositionality of analysis enables computing result once then
reusing the result it in the future

» Analysis can be performed on parts of source code
> It is possible to analyze a function, then save the result
» Previously analyzed result can be reused at next execution

> Expensive computation needs to be carried out once

24/29

Results

Our implementation demonstrates mwp-analysis is:

» Programming language-independent: reason abstractly
about imperative languages and apply to real languages

» Compositional: analyze parts of code once and reuse as
needed, unlike many other static analysis methods

» Modular: same theory can be applied to different problems
after changes in internal machinery

» Abstracted: ICC influenced technique abstracts problems
with intervals, value ranges, iterations, etc.

> Extendable: Modifications of internal mechanism may enable
capturing tight bounds, other complexity classes, etc.

25/29

Other applications & future plans

The following work has been completed so far:

1. Loop optimization: using dependency analysis borrowed from
ICC to detect inefficiencies in loops and to optimize them,
integrated with LLVM (published)

2. pymwp standalone static analyzer, for analyzing variable value
growth, for subset of C code (submitted)

26 /29

Other applications & future plans

Future directions for complexity analysis include compiler
integration:

1. Leverage intermediate representation

2. Static single assignment (SSA) form for efficiency and
fine-grained information

3. Certified complexity analysis to be able to integrate with
CompCert

27 /29

Other applications & future plans

mwp-analysis is an innovative way to capture dependecies.

It can be used to solve many other problems:

1. Loop parallelisation (currently in progress)
2. Extend loop optimization to integrate with CompCert
(future plan)

3. Floating-point analysis to track growth of error in precision
(long-term plan)

28/29

Other applications & future plans

4. ..maybe you have some ideas?

What would you do with mwp flow analysis?

29/29

