
Certifying Complexity Analysis
Clément Aubert
Augusta University

Augusta, USA
aubert@math.cnrs.fr

Thomas Rubiano
LIPN—UMR 7030 Université Sorbonne Paris Nord

Paris, France
rubiano.thomas@gmail.com

Neea Rusch
Augusta University

Augusta, USA
nrusch@augusta.edu

Thomas Seiller
LIPN—UMR 7030 Université Sorbonne Paris Nord

CNRS
Paris, France
seiller@lipn.fr

Abstract
This work drafts a strategy that leverages the field of Im-
plicit Computational Complexity to certify resource usage in
imperative programs. This original approach sidesteps some
of the most common–and difficult–obstacles “traditional”
complexity theory face when implemented in Coq.

CCS Concepts: • Theory of computation → Program
verification; Complexity theory and logic.

Keywords: Implicit Computational Complexity, Automatic
Complexity Analysis, Program Verification

1 Motivation
The ability to statically infer resource bounds of programs
offers numerous benefits, e.g., to insure safe memory usage.
Evenmore preferable if those guarantees are establishedwith
the rigor of formal verification, because that increases confi-
dence in the obtained analysis result and enables integration
of complexity analyses into larger formal developments.
Unfortunately, computational complexity is notoriously

difficult to represent formally for several reasons. In general,
deriving a complexity bound for an arbitrary program is
an undecidable problem. In the area of complexity theory,
“formalisations of even basic complexity-theoretic results are
not available” [11, p. 114], hindering certification attempts.
For practical complexity analyses, many existing tech-

niques present methodological challenges if they require e.g.,
program termination or inlining functions [6]. Therefore, a
realistic pathway toward formal certification of a program’s
resource usage is narrow. A few encouraging early results ex-
ist, and we discuss some of those in Sect. 3. In this proposal
we will sketch how a different approach, founded on Im-
plicit Computational Complexity, could sidestep some of the
usual difficulties in implementing and verifying complexity
analyses in Coq.

The field of Implicit Computational Complexity (ICC) [10]
drives better understanding of complexity classes, but it
also guides the development of resources-aware languages
and static source code analyzers. The core idea is to bound
resources while the program is being written (or type checked)

instead of measuring its resource usage afterwards on an
abstract model of computation. This can be done through
e.g., bounded recursion or using typing mechanisms. The
goal is to find a syntactical restriction or a type system such
that a program can be written or typed only if it belongs to
a particular complexity class. ICC-based systems are often
compositional and they offer more natural tools to write
programs than theoretical models of computation used in
complexity theory. We speculate these combined properties
could make ICC-approaches a conceivable pathway toward
certified complexity and sketch a more detailed plan below.

2 Preliminary Action Plan
We plan to formalize in Coq an ICC-based complexity anal-
ysis technique, the mwp-flow analysis [15]1. We chose this
method because its internal mechanics has been recently
studied [1], and by our assessment, it seems suitable for for-
malization in Coq. As for Coq, it seems like the ideal target
language because of its existing libraries and preliminary
work–some of which are discussed in Sect. 3–, most notably
related to compilers [16].

2.1 Overview of mwp-Flow Analysis
The mwp-flow analysis certifies polynomial bounds on the
size of the values manipulated by an imperative program.
While it does not ensure (or require) program termination,
it provides a certificate guaranteeing that the program uses
throughout its execution at most a polynomial amount of
space, and as a consequence that if it terminates, it will do
so in polynomial time in the size of its inputs.

The analysis computes, for each program variable, a vector
tracking how it depends on other variables. The vector values
are determined by applying the nondeterminitic rules of the
soundmwp-calculus to the commands of the program. Those
vectors are collected in a matrix. A program is assigned a
matrix only if all the values in it are bounded by a polynomial
in the inputs sizes. This technique is compositional, abstracts
away e.g., iteration bounds, and operates on a memory-less

1Where mwp stands for maximum, weak polynomial and polynomial, rep-
resenting increasing growth rates of variables values.

2022-12-23 10:59. Page 1 of 1–3.

https://orcid.org/0000-0001-6346-3043
https://orcid.org/0000-0002-7354-5330
https://orcid.org/0000-0001-6313-0898


Clément Aubert, Thomas Rubiano, Neea Rusch, and Thomas Seiller

imperative language, reminiscent of the Imp language from
Software Foundations [19].

2.2 The Coq Formalization
Our goal is to certify the analysis as presented in the original
paper [15]. Note that this does not mean that the bound is
certified, but that the mechanism to compute those bounds is
certified. Of course, this implies the correctness of the bounds
as a by-product but constitutes a major difference w.r.t. the
results discussed in Sect. 3. Preliminary explorations have
led us to establish the following milestones.

The mathematical foundations Our first goal is to
define the mathematical structure required to carry
out the rest of the construction. This requires defin-
ing vectors, matrices and their operations, semi-rings,
and honest polynomials2 that are needed to represent
the mwp-bounds. The Mathematical Components li-
brary [20] will lay the foundations for the linear alge-
bra representations, but likely requires extensions to
accommodate our specific analysis.

Implementing the language The analyzed language
is a simple imperative language that manipulates nat-
ural numbers, held in a fixed number of program vari-
ables. Its syntax includes variables, expressions (oper-
ations + and ×), Boolean expressions, and commands
(e.g., assignment, loop and decision statements, com-
mand sequences, and skip), with their usual seman-
tics. We expect implementing it and its small-steps
semantics in Coq to be relatively simple, following
the examples from Software Foundations [18, 19].

Implementing the typing system Even if it can be
computationally expensive to run an automatic in-
ference [2], the typing system in itself is relatively
simple. It contains only 10 rules, essentially one for
each type of command, and except for the initial as-
signment of vectors to variables, is fully deterministic.
We conjecture that standard methods [7, 8] to imple-
ment simple type systems will be enough, but will
require some care to scale to the matrix-as-type para-
digm of this analysis.

Certifying the analysis This will be the most demand-
ing part of our plan. The original paper contains all the
required handwritten proofs, but the authors caution
that “[t]hese proofs are long, technical and occasion-
ally highly nontrivial” [15, p. 2]. The main result of the
paper is the soundness proof of the analysis [15, The-
orem 5.3], i.e., the proof of the existence of a matrix
typing the program implies the existence of an honest
polynomial bounding the variables’ growth rates. The
main result follows from 15 pages of proofs presented
in section 7 of the paper. This section revolves around

2Which are “polynomial build up from constants in N and variables by
applying the operations + (addition) and × (multiplication).” [15, p. 5]

proving the soundness properties of the calculus, and
we expect the most substantial effort to be spent on
formalizing these proofs. Some of them are quite intri-
cate but with a satisfactory level of detail. The cases
concerning soundness of loops are the most difficult
on paper, but their inductive nature should (we hope!)
be processed by Coq rather easily.

We leave for future work the possibility of creating a
formally verified, automatic static analyzer founded on the
proof of correctness of this method: as we discussed in other
works [1, 2], care is required to implement a typing strategy
that does not rapidly become intractable.

3 Related Work
A few prior results exist that combine formalization of com-
plexity and Coq. They range from practical analyses to proofs
in computational complexity theory.
For practical application, Coq has been used to verify

stack bounds for assembly code [4] and to obtain WCET
loop-bound estimation [3]. Carbonneaux et al. [5] presented
an automatic static analyzer for imperative programs, and al-
though the analyzer itself is not verified, it generates bounds
with machine-checkable certificates, to guarantee that the
computed bound holds. For functional paradigm, McCarthy
et al. [17] developed a Coq library, with a monad that counts
abstract steps, which enabled running time analysis of pro-
grams written using the monad. An ICC-based characteri-
zation was introduced by Férée et al. [12], in the form of a
Coq library, that allows for readily proving that a function
is computable in polynomial time.
Coq has also been used to formalize some of the founda-

tions of modern complexity theory. Ciaffaglione [9] proved
the undecidability of the halting problem. Guéneau et al. [14]
formalize the O notation. Forster et al. [11] implemented a
multi-tape to single-tape compiler, and introduced the first
formalized universal Turing Machine verified w.r.t. time and
space complexity, for any model of computation, in any
proof assistant. More recently, Gäher and Kunze formal-
ized the Cook-Levin theorem in Coq [13]. Despite these
advances, formalization of complexity is in early stages and
basic complexity-theoretic results e.g., time and space hier-
archy theorems, remain unavailable.
Our proposed project differs from these earlier results

primarily in its intent. We plan to formalize the complexity
analysis mechanism itself—not its computed result, as was
done previously. In their work with the Turing Machines,
Forster et al. [11] were explicit in emphasizing the challenge
they experienced in formalizing complexity. We hypothesize
that our ICC-based approach, with e.g., its built-in abstrac-
tions, will help reduce this challenge. It is our hope that
CoqPL will welcome our proposal for a certified complexity
analysis in Coq, and will be keen on indicating any library,
tool or resource that could help.

2022-12-23 10:59. Page 2 of 1–3.



Certifying Complexity Analysis

Acknowledgments
The authors wish to thank Delphine Demange for the in-
teresting discussion she had with Neea, and the reviewers
for their careful reading and many interesting comments.
This research is supported by the Th. Jefferson Fund of the
Embassy of France in the United States and the FACE Foun-
dation, and has benefited from the research meeting 21453
“Static Analyses of Program Flows: Types and Certificate for
Complexity” in Schloss Dagstuhl. Th. Rubiano and Th. Seiller
are supported by the Île-de-France region through the DIM
RFSI project “CoHOp”. N. Rusch is supported in part by the
Augusta University Provost’s office, and the Translational
Research Program of the Department of Medicine, Medical
College of Georgia at Augusta University.

References
[1] Clément Aubert, Thomas Rubiano, Neea Rusch, and Thomas Seiller.

2022. mwp-Analysis Improvement and Implementation: Realizing
Implicit Computational Complexity. In 7th International Conference on
Formal Structures for Computation and Deduction (FSCD 2022) (Leibniz
International Proceedings in Informatics, Vol. 228), Amy P. Felty (Ed.).
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 26:1–26:23. https:
//doi.org/10.4230/LIPIcs.FSCD.2022.26

[2] Clément Aubert, Thomas Rubiano, Neea Rusch, and Thomas Seiller.
2022. pymwp: A Tool for Guaranteeing Complexity Bounds for C
Programs. (Oct. 2022). In preparation.

[3] Sandrine Blazy, André Maroneze, and David Pichardie. 2013. Formal
Verification of Loop Bound Estimation for WCET Analysis. In Verified
Software: Theories, Tools, Experiments - 5th International Conference,
VSTTE 2013, Menlo Park, CA, USA, May 17-19, 2013, Revised Selected
Papers (Lecture Notes in Computer Science, Vol. 8164), Ernie Cohen and
Andrey Rybalchenko (Eds.). Springer, 281–303. https://doi.org/10.
1007/978-3-642-54108-7_15

[4] Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and
Zhong Shao. 2014. End-to-end verification of stack-space bounds for
C programs. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’14, Edinburgh, United Kingdom -
June 09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.).
ACM, 270–281. https://doi.org/10.1145/2594291.2594301

[5] Quentin Carbonneaux, Jan Hoffmann, Thomas W. Reps, and Zhong
Shao. 2017. Automated Resource Analysis with Coq Proof Objects. In
Computer Aided Verification - 29th International Conference, CAV 2017,
Heidelberg, Germany, July 24-28, 2017, Proceedings, Part II (Lecture Notes
in Computer Science, Vol. 10427), Rupak Majumdar and Viktor Kuncak
(Eds.). Springer, 64–85. https://doi.org/10.1007/978-3-319-63390-9_4

[6] Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao. 2015. Com-
positional certified resource bounds. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation, Portland, OR, USA, June 15-17, 2015, David Grove and StephenM.
Blackburn (Eds.). Association for Computing Machinery, 467–478.
https://doi.org/10.1145/2737924.2737955

[7] Adam Chlipala. 2010. An Introduction to Programming and Proving
with Dependent Types in Coq. Journal of Formalized Reasoning 3, 2
(2010), 1–93. https://doi.org/10.6092/issn.1972-5787/1978

[8] Adam Chlipala. 2022. Formal Reasoning About Programs. The MIT
Press. http://adam.chlipala.net/frap/

[9] Alberto Ciaffaglione. 2016. Towards Turing computability via coin-
duction. Science of Computer Programming 126 (2016), 31–51. https:
//doi.org/10.1016/j.scico.2016.02.004

[10] Ugo Dal Lago. 2011. A Short Introduction to Implicit Computational
Complexity. In ESSLLI (Lecture Notes in Computer Science, Vol. 7388),

Nick Bezhanishvili and Valentin Goranko (Eds.). Springer, 89–109.
https://doi.org/10.1007/978-3-642-31485-8_3

[11] Yannick Forster, Fabian Kunze, and Maximilian Wuttke. 2020. Verified
programming of Turing machines in Coq. In Proceedings of the 9th
ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2020, New Orleans, LA, USA, January 20-21, 2020, Jasmin
Blanchette and Catalin Hritcu (Eds.). ACM, 114–128. https://doi.org/
10.1145/3372885.3373816

[12] Hugo Férée, Samuel Hym, Micaela Mayero, Jean-Yves Moyen, and
David Nowak. 2018. Formal proof of polynomial-time complexity
with quasi-interpretations. In SIGPLAN, June Andronick and Amy P.
Felty (Eds.). Association for Computing Machinery, 146–157. https:
//doi.org/10.1145/3167097

[13] Lennard Gäher and Fabian Kunze. 2021. Mechanising Complex-
ity Theory: The Cook-Levin Theorem in Coq. In 12th International
Conference on Interactive Theorem Proving, ITP 2021, June 29 to July
1, 2021, Rome, Italy (Virtual Conference) (Leibniz International Pro-
ceedings in Informatics, Vol. 193), Liron Cohen and Cezary Kaliszyk
(Eds.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 20:1–20:18.
https://doi.org/10.4230/LIPIcs.ITP.2021.20

[14] Armaël Guéneau, Arthur Charguéraud, and François Pottier. 2018. A
Fistful of Dollars: Formalizing Asymptotic Complexity Claims via De-
ductive Program Verification. In Programming Languages and Systems
- 27th European Symposium on Programming, ESOP 2018, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings (Lecture
Notes in Computer Science, Vol. 10801), Amal Ahmed (Ed.). Springer,
533–560. https://doi.org/10.1007/978-3-319-89884-1_19

[15] Neil D. Jones and Lars Kristiansen. 2009. A flow calculus of mwp-
bounds for complexity analysis. ACM Transactions on Computational
Logic 10, 4 (2009), 28:1–28:41. https://doi.org/10.1145/1555746.1555752

[16] Xavier Leroy. 2009. Formal verification of a realistic compiler. Com-
mun. ACM 52, 7 (2009), 107–115. https://doi.org/10.1145/1538788.
1538814

[17] Jay A. McCarthy, Burke Fetscher, Max S. New, Daniel Feltey, and
Robert Bruce Findler. 2018. A Coq library for internal verification of
running-times. Science of Computer Programming 164 (2018), 49–65.
https://doi.org/10.1016/j.scico.2017.05.001

[18] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casinghino,
Marco Gaboardi, Michael Greenberg, Cătălin Hriţcu, Vilhelm Sjöberg,
Andrew Tolmach, and Brent Yorgey. 2022. Programming Language
Foundations. In Software Foundations (version 6.2 ed.), Benjamin C.
Pierce (Ed.). Vol. 2. http://softwarefoundations.cis.upenn.edu

[19] Benjamin C. Pierce, Arthur Azevedo de Amorim, Chris Casingh-
ino, Marco Gaboardi, Michael Greenberg, Cătălin Hriţcu, Vilhelm
Sjöberg, and Brent Yorgey. 2022. Logical Foundations. In Soft-
ware Foundations (version 6.2 ed.), Benjamin C. Pierce (Ed.). Vol. 1.
http://softwarefoundations.cis.upenn.edu

[20] Mathematical Components team. 2022. Mathematical Components.
https://math-comp.github.io

2022-12-23 10:59. Page 3 of 1–3.

http://people.rennes.inria.fr/Delphine.Demange/
https://face-foundation.org/transatlantic-study-research/transatlantic-research-partnership/
https://face-foundation.org/
https://face-foundation.org/
https://www.dagstuhl.de/de/programm/kalender/evhp/?semnr=21453
https://www.dagstuhl.de/de/programm/kalender/evhp/?semnr=21453
https://www.dagstuhl.de/de/programm/kalender/evhp/?semnr=21453
https://www.augusta.edu/mcg/medicine/research/trp/about-srp.php
https://www.augusta.edu/mcg/medicine/research/trp/about-srp.php
https://doi.org/10.4230/LIPIcs.FSCD.2022.26
https://doi.org/10.4230/LIPIcs.FSCD.2022.26
https://doi.org/10.1007/978-3-642-54108-7_15
https://doi.org/10.1007/978-3-642-54108-7_15
https://doi.org/10.1145/2594291.2594301
https://doi.org/10.1007/978-3-319-63390-9_4
https://doi.org/10.1145/2737924.2737955
https://doi.org/10.6092/issn.1972-5787/1978
http://adam.chlipala.net/frap/
https://doi.org/10.1016/j.scico.2016.02.004
https://doi.org/10.1016/j.scico.2016.02.004
https://doi.org/10.1007/978-3-642-31485-8_3
https://doi.org/10.1145/3372885.3373816
https://doi.org/10.1145/3372885.3373816
https://doi.org/10.1145/3167097
https://doi.org/10.1145/3167097
https://doi.org/10.4230/LIPIcs.ITP.2021.20
https://doi.org/10.1007/978-3-319-89884-1_19
https://doi.org/10.1145/1555746.1555752
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1016/j.scico.2017.05.001
http://softwarefoundations.cis.upenn.edu
http://softwarefoundations.cis.upenn.edu
https://math-comp.github.io

	Abstract
	1 Motivation
	2 Preliminary Action Plan
	2.1 Overview of mwp-Flow Analysis
	2.2 The Coq Formalization

	3 Related Work
	Acknowledgments
	References

