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https://stackoverflow.com/q/315340 and https://stackoverflow.com/q/3492188
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Don’t listen to the naysayers.
There are very good reasons . . . if you want to guarantee termination,
or simplify code, for example by removing possible runtime errors.

https://stackoverflow.com/q/315340 and https://stackoverflow.com/q/3492188
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Languages with (((((((restrictions guarantees

(safe) Rust
no memory errors, no data races, controlled aliasing

Total functional programming
programs are provably terminating

Theorem-proving languages
require termination, but enable constructing formal proofs

Synchronous languages
for real-time reactive systems with response-time and memory usage restrictions
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Complexity analysis challenge
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Implicit Computational Complexity (ICC)

Let L be a programming language, C a complexity class, and [[p]] the function
computed by program p.

Find a restriction R ⊆ L, such that the following equality holds:

{[[p]] | p ∈ R} = C

The variables L, C, and R are the parameters that vary greatly between different
ICC systems1.

1Romain Péchoux. Complexité implicite : bilan et perspectives. Habilitation à Diriger des Recherches
(HDR). 2020. url: https://hal.univ-lorraine.fr/tel-02978986.
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How are Implicit Computational Complexity techniques
useful in practice?

In short: applicable to domains beyond complexity theory, to track other
semantic properties and to obtain information about runtime behavior.

TL;DR new analysis techniques to help developers write better software.
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Implicit Computational Complexity: from theory to practice

□ Automatic static complexity analysis

□ Program transformations during compilation

□ Ongoing and future explorations
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mwp analysis2

(Theoretical) method for certifying that values computed by a deterministic
imperative program will be bounded by polynomials in the program’s inputs.

Can it be used for static program analysis?

2Neil D. Jones and Lars Kristiansen. “A flow calculus of mwp-bounds for complexity analysis”. In:
ACM Trans. Comput. Log. 10.4 (Aug. 2009), 28:1–28:41. doi: 10.1145/1555746.1555752.
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The goal is to discover a polynomially bounded data-flow relation between command C,
initial values xi, and final values x′

i: [[C]](xi ⇝ x′
i).

C′ ≡ X1 := X2 + X3;
X1 := X1 + X1

[[C′]](x1, x2, x3 ⇝ x′
1, x′

2, x′
3)

x′
1 ≤ 2x2 + 2x3

x′
2 ≤ x2

x′
3 ≤ x3

C′′ ≡ X1 := 1;
loop X2 {X1 := X1 + X1}

[[C′′]](x1, x2 ⇝ x′
1, x′

2)

x′
1 ≤ 2x2

x′
2 ≤ x2
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Language
(var) X1 | X2 | X3 | . . . (aexp) e + e | e * e (bexp) e = e | e < e | . . .
(com) skip | X := e | C;C | if b then C else C | loop X {C} | while b do {C}

Inference rules

E1
⊢jk Xi : {m

i }
⊢jk Xi : V1 ⊢jk Xj : V2 E3
⊢jk Xi⋆Xj : pV1 ⊕ V2

⊢ e : V A
⊢ Xj = e : 1 j←− V

. . .

Dependencies (“flows”) weaker . . . stronger−−−−−−−−−−→
0 : no dependency m : maximal w : weak polynomial p : polynomial

mwp-bound max(x⃗, poly1(y⃗)) + poly2(z⃗)
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Analysis example

void main(int X1 , int X2 , int X3){
if (X1 < X2) {

X3 = X1 + X1;
}
else {

X3 = X3 + X2;
}
while (X1 < 0){

X1 = X2 + X3;
}

}

X1 X2 X3
X1 m 0 0
X2 0 m 0
X3 0 0 m
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Analysis example

void main(int X1 , int X2 , int X3){
if (X1 < X2) {

X3 = X1 + X1;
}
else {

X3 = X3 + X2;
}
while (X1 < 0){

X1 = X2 + X3;
}

}

X1 X2 X3
X1 m 0 0
X2 w m 0
X3 w 0 m

= M∗

Side condition: ∀i, M∗
ii = m and ∀i, j, M∗

ij ̸= p
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Analysis example

void main(int X1 , int X2 , int X3){
if (X1 < X2) {

X3 = X1 + X1;
}
else {

X3 = X3 + X2;
}
while (X1 < 0){

X1 = X2 + X3;
}

}

X1 X2 X3
X1 p 0 p
X2 p m p
X3 w 0 m

= C;C
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Derivation success

C′ ≡ X1 := X2 + X3;
X1 := X1 + X1

E1
⊢jk X2 :

( 0
m
0

) E1
⊢jk X3 :

( 0
0
m

)
E3

⊢jk X2+X3 :
( 0

p
m

)
A

⊢jk X1:=X2+X3 :
(

0 0 0
p m 0
m 0 m

)
...

A
⊢jk X1:=X1+X1 :

(
p 0 0
0 m 0
0 0 m

)
...

C
⊢jk X1:=X2+X3;X1:=X1+X1 :

(
0 0 0
p m 0
p 0 m

)

x′
1 ≤W1(; ; x2, x3) ∧ x′

2 ≤W2(x2) ∧ x′
3 ≤W3(x3)
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Derivation failure

C′′ ≡ X1 := 1;
loop X2 {X1 := X1 + X1}

E1
⊢jk X1:=1 : ( m

0 )
...

A
⊢jk X1:=X1+X1 :

(
p 0
0 m

)
...

⊢jk C : M∀i, M∗
ii = m L

⊢jk loop Xℓ {C} : M∗ ⊕ {pℓ→ j | ∃i, M∗
ij = p}
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Nondeterminism

E1
⊢jk Xi : {mi }

E2
⊢jk e : {wi | Xi ∈ var(e)}

⊢jk Xi : V1 ⊢jk Xj : V2 E3
⊢jk Xi⋆Xj : pV1 ⊕ V2

⊢jk Xi : V1 ⊢jk Xj : V2 E4
⊢jk Xi⋆Xj : V1 ⊕ pV2

X2 + X3 has 3 derivations:

by (E2)
(

0
w
w

)
by (E1) and (E3)

(
0
p
m

)
by (E1) and (E4)

( 0
m
p

)

In general n choices yields 3n derivations.
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Improvement

Idea: internalize the choices as functions from choices to coefficients.

If a coefficient depends on a choice, represent as 3 elements (think {0, 1, 2}n)

If independent, represented as a single element.

We define basic functions δ(i, j) where i is a value, and j is index of the domain.
If jth input is equal to i, then (i, j) is equal to the unit of the mwp semi-ring, else 0.

⋆ ∈ {+,−} EA
⊢ Xi⋆Xj : (0 7→ {m

i
,p
j
})⊕ (1 7→ {p

i
,m
j
})⊕ (2 7→ {w

i
,w
j
})
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The failure problem

C ≡ while (b){X1 :=X2+X2}

Derivation of X1:=X2+X2 yields two matrices: ( 0 0
p m ) and ( 0 0

w m )

⊢jk C : M∀i, M∗
ii = m and ∀i, j, M∗

ij ̸= p W
⊢jk while b do {C} : M∗

⇒ derivation ( 0 0
p m ) fails but derivation ( 0 0

w m ) succeeds.
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Representing failure

Idea: We introduce ∞ flow to represent non-polynomial dependencies.

{0, m, w, p,∞}

Every derivation can be completed without restarts.
Captures localized information about where failure occurs.
Once failure is introduced, it cannot be erased i.e., ∞×∞ 0 =∞.

C ≡ while (b){X1:=X2+X2}

(
m+∞δ(0,0)+∞δ(1,0) 0

∞δ(0,0)+∞δ(1,0)+wδ(2,0) m

)
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Implementation: pymwp3

A prototype static analyzer for a subset of C99 programs.

Source code and demo: statycc.github.io/pymwp/demo

Install: pip install pymwp

Usage

pymwp /path/to/file.c [ARGS]

3Clément Aubert et al. “pymwp: A Static Analyzer Determining Polynomial Growth Bounds”. In:
Automated Technology for Verification and Analysis. Ed. by Étienne André and Jun Sun. Cham:
Springer Nature Switzerland, 2023, pp. 263–275. isbn: 978-3-031-45332-8.
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Apart from ∞ coefficients, the original and adjusted mwp systems agree.

The latter provides a tractable technique: better proof-search strategy,
fine-grained feedback, etc.

Can it be used for static program analysis? ⇒ Yes, after adjustment.

Implicit Computational Complexity: From Theory to Practice Neea Rusch 18 / 31
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mwp analysis improvement and implementation4

mwp-analysis −→ mwp-analysis′ ∗−−→ static program analysis

Main result
Lightweight, fast, practical data-size analysis focused on input value growth.

Key adjustments and enhancements
Adjusted mathematical framework: deterministic rules, internalized failure; concrete
implementation.

Key insights
Learning how to communicate results to a different community.

4Clément Aubert et al. “mwp-Analysis Improvement and Implementation: Realizing Implicit
Computational Complexity”. In: FSCD 2022. Vol. 228. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022, 26:1–26:23. doi: 10.4230/LIPIcs.FSCD.2022.26.
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Implicit Computational Complexity: from theory to practice

✓ Automatic static complexity analysis

□ Program transformations during compilation

□ Ongoing and future explorations
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Loop transformations

loop (0... n) {
task_x

}
loop (0... n) {

task_y
}

Fission or
distribution

⇔

loop (0... n) {
task_x
task_y

}

Fusion or
combination

⇔

loop (0... n/2) {
task_x
task_y

}
loop (n /2... n) {

task_x
task_y

}

Splitting

. . . and many more strategies.
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Main idea

A loop optimization algorithm based on loop fission transformation, to introduce
parallelization potential in previously uncovered cases.

Conceptually:

Distribute loops ⇒ parallelize ⇒ speedup in execution time
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Technique overview

Input is a sequential imperative program.

1. Perform dependency analysis using data flow graphs (dfg).

2. Build a dependency graph.

3. Compute condensation graph and its covering.

4. Create loop for each statement in covering.

5. Parallelize distributed loops.
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Variables in command C

We identify variables modified by (Out), used by (In), and occurring (Occ) in C.

For example, C ::= t[e1] = e2,

Out(C) = t

In(C) = Occ(e1) ∪Occ(e2)

Occ(C) = t ∪Occ(e1) ∪Occ(e2)

We represent and analyze these dependencies using Data Flow Graphs (dfgs).

Implicit Computational Complexity: From Theory to Practice Neea Rusch 23 / 31
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Data flow graph

• A dfg is a matrix over a fixed semi-ring.

• Represents a weighted relation on set of variables involved in command C.

• 3 types of dependencies:
∞ dependence x xdependence

1 propagation y ypropagation

0 reinitialization z zreinitialization
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Representing dfgs

C ::= t[i] = u + j
M(C) M(C) as a graph

Out(C) = {t}
In(C) = {i, u, j}

Occ(C) = {t, i, u, j}


t i u j

t 0 0 0 0
i ∞ 1 0 0
u ∞ 0 1 0
j ∞ 0 0 1


t
i
u
j

t
i
u
j
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Correction

All body variables of conditional and loop statements depend on its control
expression. We apply loop correction to account for this dependency.

For e an expression and C a command, Corr(e)C, is Et ×O.

• Et – column vector with ∞ for variables in Occ(e) and 0 for other variables.

• O – row vector with ∞ for variables in Out(C) and 0 for other variables.
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Algorithm

1. Pick a loop at top level.

2. Construct a dependence graph, which uses the dfg.

3. Compute its condensation graph from dependence graph.

4. Compute a covering of the condensation graph.

5. Create a loop per element of the covering.
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Example

Identify In and Out variables

while (j < m) {
x = r[i] * A[i][j]; // C1
y = A[i][j] * p[j]; // C2
s[j] = s[j] + x; // C3
q[i] = q[i] + y; // C4
j++; // C5

}

Out(C1) = {x}
In(C1) = {A, i, j, r}

...
Out(C3) = {s}

In(C3) = {s, j, x}
...

Out(C5) = {j}
In(C5) = {j}
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Example

Construct dfgs for each command

while (j < m) {
x = r[i] * A[i][j]; // C1
y = A[i][j] * p[j]; // C2
s[j] = s[j] + x; // C3
q[i] = q[i] + y; // C4
j++; // C5

}

M(C1) =



i j m x y A r s p q
i 1 · · ∞ · · · · · ·
j · 1 · ∞ · · · · · ·
m · · 1 · · · · · · ·
x · · · · · · · · · ·
y · · · · 1 · · · · ·
A · · · ∞ · 1 · · · ·
r · · · ∞ · · 1 · · ·
s · · · · · · · 1 · ·
p · · · · · · · · 1 ·
q · · · · · · · · · 1


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Example

Compose dfgs of commands M(C1; . . . ; Cn) and apply loop correction Et ×O

M(C) =



i j m x y A r s p q
i 1 · · ∞ ∞ · · · · ∞
j · ∞ · ∞ ∞ · · ∞ · ∞
m · ∞ 1 ∞ ∞ · · ∞ · ∞
x · · · · · · · ∞ · ·
y · · · · · · · · · ∞
A · · · ∞ ∞ 1 · · · ·
r · · · ∞ · · 1 · · ·
s · · · · · · · ∞ · ·
p · · · · ∞ · · · 1 ·
q · · · · · · · · · ∞



M(C) = M(C5) × · · · × M(C1) + Corr(e)C
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Example

Construct a dependence graph. Vertices are the set of commands {C1; · · · ; Cn}.
Add directed edge from Ci to Cj iff ∃ x, y, where x ∈ Out(Cj) and y ∈ In(Ci)
and M(W)(y, x) =∞.

j++
x=r[i]*A[i][j] y=A[i][j]*p[j]

q[i]=q[i]+ys[j]=s[j]+x
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Example

Construct a condensation graph and proper saturated covering.

C5

C1,3 C2,4

⇒

C5

C1,3

C5

C2,4
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Example

Distribute loops and parallelize.

W̃ := parallel


while (j < m) {

x = r[i] * A[i][j];
s[j] = s[j] + x;
j++;

}




while (j < m) {
y = A[i][j] * p[j];
q[i] = q[i] + y;
j++;

}


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Distributing and parallelizing non-canonical loops5,6

complexity analysis −→ command independence −→ program optimization

Main result
Automatable loop optimization for increasing parallelization potential.

Key insights
The internals of the analysis were easier to handle; adapted technique from one
domain to another and to track a different semantic property; experimental
evaluation was relevant.

5Clément Aubert et al. “Distributing and Parallelizing Non-canonical Loops”. In: Verification, Model
Checking, and Abstract Interpretation. Ed. by Cezara Dragoi, Michael Emmi, and Jingbo Wang.
Vol. 13881. LNCS. Springer, 2023, pp. 1–24. doi: 10.1007/978-3-031-24950-1_1.

6Clément Aubert et al. Distributing and Parallelizing Non-canonical Loops – Artifact. Version 1.0. Sept.
2022. doi: 10.5281/zenodo.7080145. url: https://github.com/statycc/loop-fission.
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Implicit Computational Complexity: from theory to practice

✓ Automatic static complexity analysis

✓ Program transformations during compilation

□ Ongoing and future explorations
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Ongoing projects

Formally verified complexity analysis
Formalize the mwp-analysis using Coq proof assistant7.

Noninterference analysis
The mathematical framework used in the loop transformation technique can be
further adjusted to track secure data flow8.

7Clément Aubert et al. “Certifying Complexity Analysis”. At the Ninth International Workshop on Coq
for Programming Languages. 2023.
8Clément Aubert and Neea Rusch. “An Information Flow Calculus for Non-Interference”. At The 19th

Workshop on Programming Languages and Analysis for Security. 2024.
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Final remarks

Restricting programming languages is useful
Don’t listen to the naysayers – we’ve seen many examples.

Communication is key when crossing domains
Impacts presentation style, evaluation strategy, and outcomes.

Want to collaborate or get in touch: nrusch@augusta.edu
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