
Implicit Computational Complexity:
From Theory to Practice

Neea Rusch
Augusta University, United States

Theory Seminar @ Aalto, 20 August 2024

intro ICC mwp transformations current projects

Verification challenge

Implicit Computational Complexity: From Theory to Practice Neea Rusch 1 / 31

intro ICC mwp transformations current projects

Verification challenge

Implicit Computational Complexity: From Theory to Practice Neea Rusch 1 / 31

intro ICC mwp transformations current projects

https://stackoverflow.com/q/315340 and https://stackoverflow.com/q/3492188

Implicit Computational Complexity: From Theory to Practice Neea Rusch 2 / 31

https://stackoverflow.com/q/315340
https://stackoverflow.com/q/3492188

intro ICC mwp transformations current projects

Don’t listen to the naysayers.
There are very good reasons . . . if you want to guarantee termination,
or simplify code, for example by removing possible runtime errors.

https://stackoverflow.com/q/315340 and https://stackoverflow.com/q/3492188

Implicit Computational Complexity: From Theory to Practice Neea Rusch 2 / 31

https://stackoverflow.com/q/315340
https://stackoverflow.com/q/3492188

intro ICC mwp transformations current projects

Languages with (((((((restrictions guarantees

(safe) Rust
no memory errors, no data races, controlled aliasing

Total functional programming
programs are provably terminating

Theorem-proving languages
require termination, but enable constructing formal proofs

Synchronous languages
for real-time reactive systems with response-time and memory usage restrictions

Implicit Computational Complexity: From Theory to Practice Neea Rusch 3 / 31

intro ICC mwp transformations current projects

Complexity analysis challenge

Implicit Computational Complexity: From Theory to Practice Neea Rusch 4 / 31

intro ICC mwp transformations current projects

Implicit Computational Complexity (ICC)

Let L be a programming language, C a complexity class, and [[p]] the function
computed by program p.

Find a restriction R ⊆ L, such that the following equality holds:

{[[p]] | p ∈ R} = C

The variables L, C, and R are the parameters that vary greatly between different
ICC systems1.

1Romain Péchoux. Complexité implicite : bilan et perspectives. Habilitation à Diriger des Recherches
(HDR). 2020. url: https://hal.univ-lorraine.fr/tel-02978986.

Implicit Computational Complexity: From Theory to Practice Neea Rusch 5 / 31

https://hal.univ-lorraine.fr/tel-02978986

intro ICC mwp transformations current projects

How are Implicit Computational Complexity techniques
useful in practice?

In short: applicable to domains beyond complexity theory, to track other
semantic properties and to obtain information about runtime behavior.

TL;DR new analysis techniques to help developers write better software.

Implicit Computational Complexity: From Theory to Practice Neea Rusch 6 / 31

intro ICC mwp transformations current projects

Implicit Computational Complexity: from theory to practice

□ Automatic static complexity analysis

□ Program transformations during compilation

□ Ongoing and future explorations

Implicit Computational Complexity: From Theory to Practice Neea Rusch 6 / 31

intro ICC mwp transformations current projects

mwp analysis2

(Theoretical) method for certifying that values computed by a deterministic
imperative program will be bounded by polynomials in the program’s inputs.

Can it be used for static program analysis?

2Neil D. Jones and Lars Kristiansen. “A flow calculus of mwp-bounds for complexity analysis”. In:
ACM Trans. Comput. Log. 10.4 (Aug. 2009), 28:1–28:41. doi: 10.1145/1555746.1555752.

Implicit Computational Complexity: From Theory to Practice Neea Rusch 7 / 31

https://doi.org/10.1145/1555746.1555752

intro ICC mwp transformations current projects

The goal is to discover a polynomially bounded data-flow relation between command C,
initial values xi, and final values x′

i: [[C]](xi ⇝ x′
i).

C′ ≡ X1 := X2 + X3;
X1 := X1 + X1

[[C′]](x1, x2, x3 ⇝ x′
1, x′

2, x′
3)

x′
1 ≤ 2x2 + 2x3

x′
2 ≤ x2

x′
3 ≤ x3

C′′ ≡ X1 := 1;
loop X2 {X1 := X1 + X1}

[[C′′]](x1, x2 ⇝ x′
1, x′

2)

x′
1 ≤ 2x2

x′
2 ≤ x2

Implicit Computational Complexity: From Theory to Practice Neea Rusch 8 / 31

intro ICC mwp transformations current projects

Language
(var) X1 | X2 | X3 | . . . (aexp) e + e | e * e (bexp) e = e | e < e | . . .
(com) skip | X := e | C;C | if b then C else C | loop X {C} | while b do {C}

Inference rules

E1
⊢jk Xi : {m

i }
⊢jk Xi : V1 ⊢jk Xj : V2 E3
⊢jk Xi⋆Xj : pV1 ⊕ V2

⊢ e : V A
⊢ Xj = e : 1 j←− V

. . .

Dependencies (“flows”) weaker . . . stronger−−−−−−−−−−→
0 : no dependency m : maximal w : weak polynomial p : polynomial

mwp-bound max(x⃗, poly1(y⃗)) + poly2(z⃗)

Implicit Computational Complexity: From Theory to Practice Neea Rusch 9 / 31

intro ICC mwp transformations current projects

Analysis example

void main(int X1 , int X2 , int X3){
if (X1 < X2) {

X3 = X1 + X1;
}
else {

X3 = X3 + X2;
}
while (X1 < 0){

X1 = X2 + X3;
}

}

X1 X2 X3
X1 m 0 0
X2 0 m 0
X3 0 0 m

Implicit Computational Complexity: From Theory to Practice Neea Rusch 10 / 31

intro ICC mwp transformations current projects

Analysis example

void main(int X1 , int X2 , int X3){
if (X1 < X2) {

X3 = X1 + X1;
}
else {

X3 = X3 + X2;
}
while (X1 < 0){

X1 = X2 + X3;
}

}

X1 X2 X3
X1 m 0 p
X2 0 m 0
X3 0 0 m

Implicit Computational Complexity: From Theory to Practice Neea Rusch 10 / 31

intro ICC mwp transformations current projects

Analysis example

void main(int X1 , int X2 , int X3){
if (X1 < X2) {

X3 = X1 + X1;
}
else {

X3 = X3 + X2;
}
while (X1 < 0){

X1 = X2 + X3;
}

}

X1 X2 X3
X1 m 0 0
X2 0 m p
X3 0 0 m

Implicit Computational Complexity: From Theory to Practice Neea Rusch 10 / 31

intro ICC mwp transformations current projects

Analysis example

void main(int X1 , int X2 , int X3){
if (X1 < X2) {

X3 = X1 + X1;
}
else {

X3 = X3 + X2;
}
while (X1 < 0){

X1 = X2 + X3;
}

}

X1 X2 X3
X1 m 0 p
X2 0 m p
X3 0 0 m

Implicit Computational Complexity: From Theory to Practice Neea Rusch 10 / 31

intro ICC mwp transformations current projects

Analysis example

void main(int X1 , int X2 , int X3){
if (X1 < X2) {

X3 = X1 + X1;
}
else {

X3 = X3 + X2;
}
while (X1 < 0){

X1 = X2 + X3;
}

}

X1 X2 X3
X1 m 0 0
X2 w m 0
X3 w 0 m

Implicit Computational Complexity: From Theory to Practice Neea Rusch 10 / 31

intro ICC mwp transformations current projects

Analysis example

void main(int X1 , int X2 , int X3){
if (X1 < X2) {

X3 = X1 + X1;
}
else {

X3 = X3 + X2;
}
while (X1 < 0){

X1 = X2 + X3;
}

}

X1 X2 X3
X1 m 0 0
X2 w m 0
X3 w 0 m

= M∗

Side condition: ∀i, M∗
ii = m and ∀i, j, M∗

ij ̸= p

Implicit Computational Complexity: From Theory to Practice Neea Rusch 10 / 31

intro ICC mwp transformations current projects

Analysis example

void main(int X1 , int X2 , int X3){
if (X1 < X2) {

X3 = X1 + X1;
}
else {

X3 = X3 + X2;
}
while (X1 < 0){

X1 = X2 + X3;
}

}

X1 X2 X3
X1 p 0 p
X2 p m p
X3 w 0 m

= C;C

Implicit Computational Complexity: From Theory to Practice Neea Rusch 10 / 31

intro ICC mwp transformations current projects

Derivation success

C′ ≡ X1 := X2 + X3;
X1 := X1 + X1

E1
⊢jk X2 :

(0
m
0

) E1
⊢jk X3 :

(0
0
m

)
E3

⊢jk X2+X3 :
(0

p
m

)
A

⊢jk X1:=X2+X3 :
(

0 0 0
p m 0
m 0 m

)
...

A
⊢jk X1:=X1+X1 :

(
p 0 0
0 m 0
0 0 m

)
...

C
⊢jk X1:=X2+X3;X1:=X1+X1 :

(
0 0 0
p m 0
p 0 m

)

x′
1 ≤W1(; ; x2, x3) ∧ x′

2 ≤W2(x2) ∧ x′
3 ≤W3(x3)

Implicit Computational Complexity: From Theory to Practice Neea Rusch 11 / 31

intro ICC mwp transformations current projects

Derivation failure

C′′ ≡ X1 := 1;
loop X2 {X1 := X1 + X1}

E1
⊢jk X1:=1 : (m

0)
...

A
⊢jk X1:=X1+X1 :

(
p 0
0 m

)
...

⊢jk C : M∀i, M∗
ii = m L

⊢jk loop Xℓ {C} : M∗ ⊕ {pℓ→ j | ∃i, M∗
ij = p}

Implicit Computational Complexity: From Theory to Practice Neea Rusch 12 / 31

intro ICC mwp transformations current projects

Nondeterminism

E1
⊢jk Xi : {mi }

E2
⊢jk e : {wi | Xi ∈ var(e)}

⊢jk Xi : V1 ⊢jk Xj : V2 E3
⊢jk Xi⋆Xj : pV1 ⊕ V2

⊢jk Xi : V1 ⊢jk Xj : V2 E4
⊢jk Xi⋆Xj : V1 ⊕ pV2

X2 + X3 has 3 derivations:

by (E2)
(

0
w
w

)
by (E1) and (E3)

(
0
p
m

)
by (E1) and (E4)

(0
m
p

)

In general n choices yields 3n derivations.

Implicit Computational Complexity: From Theory to Practice Neea Rusch 13 / 31

intro ICC mwp transformations current projects

Improvement

Idea: internalize the choices as functions from choices to coefficients.

If a coefficient depends on a choice, represent as 3 elements (think {0, 1, 2}n)

If independent, represented as a single element.

We define basic functions δ(i, j) where i is a value, and j is index of the domain.
If jth input is equal to i, then (i, j) is equal to the unit of the mwp semi-ring, else 0.

⋆ ∈ {+,−} EA
⊢ Xi⋆Xj : (0 7→ {m

i
,p
j
})⊕ (1 7→ {p

i
,m
j
})⊕ (2 7→ {w

i
,w
j
})

Implicit Computational Complexity: From Theory to Practice Neea Rusch 14 / 31

intro ICC mwp transformations current projects

The failure problem

C ≡ while (b){X1 :=X2+X2}

Derivation of X1:=X2+X2 yields two matrices: (0 0
p m) and (0 0

w m)

⊢jk C : M∀i, M∗
ii = m and ∀i, j, M∗

ij ̸= p W
⊢jk while b do {C} : M∗

⇒ derivation (0 0
p m) fails but derivation (0 0

w m) succeeds.

Implicit Computational Complexity: From Theory to Practice Neea Rusch 15 / 31

intro ICC mwp transformations current projects

Representing failure

Idea: We introduce ∞ flow to represent non-polynomial dependencies.

{0, m, w, p,∞}

Every derivation can be completed without restarts.
Captures localized information about where failure occurs.
Once failure is introduced, it cannot be erased i.e., ∞×∞ 0 =∞.

C ≡ while (b){X1:=X2+X2}

(
m+∞δ(0,0)+∞δ(1,0) 0

∞δ(0,0)+∞δ(1,0)+wδ(2,0) m

)

Implicit Computational Complexity: From Theory to Practice Neea Rusch 16 / 31

intro ICC mwp transformations current projects

Implementation: pymwp3

A prototype static analyzer for a subset of C99 programs.

Source code and demo: statycc.github.io/pymwp/demo

Install: pip install pymwp

Usage

pymwp /path/to/file.c [ARGS]

3Clément Aubert et al. “pymwp: A Static Analyzer Determining Polynomial Growth Bounds”. In:
Automated Technology for Verification and Analysis. Ed. by Étienne André and Jun Sun. Cham:
Springer Nature Switzerland, 2023, pp. 263–275. isbn: 978-3-031-45332-8.

Implicit Computational Complexity: From Theory to Practice Neea Rusch 17 / 31

https://statycc.github.io/pymwp/demo

intro ICC mwp transformations current projects

Apart from ∞ coefficients, the original and adjusted mwp systems agree.

The latter provides a tractable technique: better proof-search strategy,
fine-grained feedback, etc.

Can it be used for static program analysis? ⇒ Yes, after adjustment.

Implicit Computational Complexity: From Theory to Practice Neea Rusch 18 / 31

intro ICC mwp transformations current projects

mwp analysis improvement and implementation4

mwp-analysis −→ mwp-analysis′ ∗−−→ static program analysis

Main result
Lightweight, fast, practical data-size analysis focused on input value growth.

Key adjustments and enhancements
Adjusted mathematical framework: deterministic rules, internalized failure; concrete
implementation.

Key insights
Learning how to communicate results to a different community.

4Clément Aubert et al. “mwp-Analysis Improvement and Implementation: Realizing Implicit
Computational Complexity”. In: FSCD 2022. Vol. 228. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022, 26:1–26:23. doi: 10.4230/LIPIcs.FSCD.2022.26.

Implicit Computational Complexity: From Theory to Practice Neea Rusch 19 / 31

https://doi.org/10.4230/LIPIcs.FSCD.2022.26

intro ICC mwp transformations current projects

Implicit Computational Complexity: from theory to practice

✓ Automatic static complexity analysis

□ Program transformations during compilation

□ Ongoing and future explorations

Implicit Computational Complexity: From Theory to Practice Neea Rusch 19 / 31

intro ICC mwp transformations current projects

Loop transformations

loop (0... n) {
task_x

}
loop (0... n) {

task_y
}

Fission or
distribution

⇔

loop (0... n) {
task_x
task_y

}

Fusion or
combination

⇔

loop (0... n/2) {
task_x
task_y

}
loop (n /2... n) {

task_x
task_y

}

Splitting

. . . and many more strategies.

Implicit Computational Complexity: From Theory to Practice Neea Rusch 20 / 31

intro ICC mwp transformations current projects

Main idea

A loop optimization algorithm based on loop fission transformation, to introduce
parallelization potential in previously uncovered cases.

Conceptually:

Distribute loops ⇒ parallelize ⇒ speedup in execution time

Implicit Computational Complexity: From Theory to Practice Neea Rusch 21 / 31

intro ICC mwp transformations current projects

Technique overview

Input is a sequential imperative program.

1. Perform dependency analysis using data flow graphs (dfg).

2. Build a dependency graph.

3. Compute condensation graph and its covering.

4. Create loop for each statement in covering.

5. Parallelize distributed loops.

Implicit Computational Complexity: From Theory to Practice Neea Rusch 22 / 31

intro ICC mwp transformations current projects

Variables in command C

We identify variables modified by (Out), used by (In), and occurring (Occ) in C.

For example, C ::= t[e1] = e2,

Out(C) = t

In(C) = Occ(e1) ∪Occ(e2)

Occ(C) = t ∪Occ(e1) ∪Occ(e2)

We represent and analyze these dependencies using Data Flow Graphs (dfgs).

Implicit Computational Complexity: From Theory to Practice Neea Rusch 23 / 31

intro ICC mwp transformations current projects

Data flow graph

• A dfg is a matrix over a fixed semi-ring.

• Represents a weighted relation on set of variables involved in command C.

• 3 types of dependencies:
∞ dependence x xdependence

1 propagation y ypropagation

0 reinitialization z zreinitialization

Implicit Computational Complexity: From Theory to Practice Neea Rusch 24 / 31

intro ICC mwp transformations current projects

Representing dfgs

C ::= t[i] = u + j
M(C) M(C) as a graph

Out(C) = {t}
In(C) = {i, u, j}

Occ(C) = {t, i, u, j}


t i u j

t 0 0 0 0
i ∞ 1 0 0
u ∞ 0 1 0
j ∞ 0 0 1


t
i
u
j

t
i
u
j

Implicit Computational Complexity: From Theory to Practice Neea Rusch 25 / 31

intro ICC mwp transformations current projects

Correction

All body variables of conditional and loop statements depend on its control
expression. We apply loop correction to account for this dependency.

For e an expression and C a command, Corr(e)C, is Et ×O.

• Et – column vector with ∞ for variables in Occ(e) and 0 for other variables.

• O – row vector with ∞ for variables in Out(C) and 0 for other variables.

Implicit Computational Complexity: From Theory to Practice Neea Rusch 26 / 31

intro ICC mwp transformations current projects

Algorithm

1. Pick a loop at top level.

2. Construct a dependence graph, which uses the dfg.

3. Compute its condensation graph from dependence graph.

4. Compute a covering of the condensation graph.

5. Create a loop per element of the covering.

Implicit Computational Complexity: From Theory to Practice Neea Rusch 27 / 31

intro ICC mwp transformations current projects

Example

Identify In and Out variables

while (j < m) {
x = r[i] * A[i][j]; // C1
y = A[i][j] * p[j]; // C2
s[j] = s[j] + x; // C3
q[i] = q[i] + y; // C4
j++; // C5

}

Out(C1) = {x}
In(C1) = {A, i, j, r}

...
Out(C3) = {s}

In(C3) = {s, j, x}
...

Out(C5) = {j}
In(C5) = {j}

Implicit Computational Complexity: From Theory to Practice Neea Rusch 28 / 31

intro ICC mwp transformations current projects

Example

Construct dfgs for each command

while (j < m) {
x = r[i] * A[i][j]; // C1
y = A[i][j] * p[j]; // C2
s[j] = s[j] + x; // C3
q[i] = q[i] + y; // C4
j++; // C5

}

M(C1) =



i j m x y A r s p q
i 1 · · ∞ · · · · · ·
j · 1 · ∞ · · · · · ·
m · · 1 · · · · · · ·
x · · · · · · · · · ·
y · · · · 1 · · · · ·
A · · · ∞ · 1 · · · ·
r · · · ∞ · · 1 · · ·
s · · · · · · · 1 · ·
p · · · · · · · · 1 ·
q · · · · · · · · · 1



Implicit Computational Complexity: From Theory to Practice Neea Rusch 28 / 31

intro ICC mwp transformations current projects

Example

Compose dfgs of commands M(C1; . . . ; Cn) and apply loop correction Et ×O

M(C) =



i j m x y A r s p q
i 1 · · ∞ ∞ · · · · ∞
j · ∞ · ∞ ∞ · · ∞ · ∞
m · ∞ 1 ∞ ∞ · · ∞ · ∞
x · · · · · · · ∞ · ·
y · · · · · · · · · ∞
A · · · ∞ ∞ 1 · · · ·
r · · · ∞ · · 1 · · ·
s · · · · · · · ∞ · ·
p · · · · ∞ · · · 1 ·
q · · · · · · · · · ∞



M(C) = M(C5) × · · · × M(C1) + Corr(e)C

Implicit Computational Complexity: From Theory to Practice Neea Rusch 28 / 31

intro ICC mwp transformations current projects

Example

Construct a dependence graph. Vertices are the set of commands {C1; · · · ; Cn}.
Add directed edge from Ci to Cj iff ∃ x, y, where x ∈ Out(Cj) and y ∈ In(Ci)
and M(W)(y, x) =∞.

j++
x=r[i]*A[i][j] y=A[i][j]*p[j]

q[i]=q[i]+ys[j]=s[j]+x

Implicit Computational Complexity: From Theory to Practice Neea Rusch 28 / 31

intro ICC mwp transformations current projects

Example

Construct a condensation graph and proper saturated covering.

C5

C1,3 C2,4

⇒

C5

C1,3

C5

C2,4

Implicit Computational Complexity: From Theory to Practice Neea Rusch 28 / 31

intro ICC mwp transformations current projects

Example

Distribute loops and parallelize.

W̃ := parallel


while (j < m) {

x = r[i] * A[i][j];
s[j] = s[j] + x;
j++;

}




while (j < m) {
y = A[i][j] * p[j];
q[i] = q[i] + y;
j++;

}



Implicit Computational Complexity: From Theory to Practice Neea Rusch 28 / 31

intro ICC mwp transformations current projects

Distributing and parallelizing non-canonical loops5,6

complexity analysis −→ command independence −→ program optimization

Main result
Automatable loop optimization for increasing parallelization potential.

Key insights
The internals of the analysis were easier to handle; adapted technique from one
domain to another and to track a different semantic property; experimental
evaluation was relevant.

5Clément Aubert et al. “Distributing and Parallelizing Non-canonical Loops”. In: Verification, Model
Checking, and Abstract Interpretation. Ed. by Cezara Dragoi, Michael Emmi, and Jingbo Wang.
Vol. 13881. LNCS. Springer, 2023, pp. 1–24. doi: 10.1007/978-3-031-24950-1_1.

6Clément Aubert et al. Distributing and Parallelizing Non-canonical Loops – Artifact. Version 1.0. Sept.
2022. doi: 10.5281/zenodo.7080145. url: https://github.com/statycc/loop-fission.

Implicit Computational Complexity: From Theory to Practice Neea Rusch 29 / 31

https://doi.org/10.1007/978-3-031-24950-1_1
https://doi.org/10.5281/zenodo.7080145
https://github.com/statycc/loop-fission

intro ICC mwp transformations current projects

Implicit Computational Complexity: from theory to practice

✓ Automatic static complexity analysis

✓ Program transformations during compilation

□ Ongoing and future explorations

Implicit Computational Complexity: From Theory to Practice Neea Rusch 29 / 31

intro ICC mwp transformations current projects

Ongoing projects

Formally verified complexity analysis
Formalize the mwp-analysis using Coq proof assistant7.

Noninterference analysis
The mathematical framework used in the loop transformation technique can be
further adjusted to track secure data flow8.

7Clément Aubert et al. “Certifying Complexity Analysis”. At the Ninth International Workshop on Coq
for Programming Languages. 2023.
8Clément Aubert and Neea Rusch. “An Information Flow Calculus for Non-Interference”. At The 19th

Workshop on Programming Languages and Analysis for Security. 2024.

Implicit Computational Complexity: From Theory to Practice Neea Rusch 30 / 31

intro ICC mwp transformations current projects

Final remarks

Restricting programming languages is useful
Don’t listen to the naysayers – we’ve seen many examples.

Communication is key when crossing domains
Impacts presentation style, evaluation strategy, and outcomes.

Want to collaborate or get in touch: nrusch@augusta.edu

Implicit Computational Complexity: From Theory to Practice Neea Rusch 31 / 31

intro ICC mwp transformations current projects

Bibliography

Aubert, Clément, Thomas Rubiano, Neea Rusch, and Thomas Seiller. “Certifying Complexity Analysis”.
At the Ninth International Workshop on Coq for Programming Languages. 2023.

— .“Distributing and Parallelizing Non-canonical Loops”. In: Verification, Model Checking, and
Abstract Interpretation. Ed. by Cezara Dragoi, Michael Emmi, and Jingbo Wang. Vol. 13881. LNCS.
Springer, 2023, pp. 1–24. doi: 10.1007/978-3-031-24950-1_1.

— .“mwp-Analysis Improvement and Implementation: Realizing Implicit Computational Complexity”.
In: FSCD 2022. Vol. 228. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022,
26:1–26:23. doi: 10.4230/LIPIcs.FSCD.2022.26.

— .“pymwp: A Static Analyzer Determining Polynomial Growth Bounds”. In: Automated Technology
for Verification and Analysis. Ed. by Étienne André and Jun Sun. Cham: Springer Nature
Switzerland, 2023, pp. 263–275. isbn: 978-3-031-45332-8.

Aubert, Clément and Neea Rusch. “An Information Flow Calculus for Non-Interference”. At The 19th
Workshop on Programming Languages and Analysis for Security. 2024.

Rusch, Neea. “Formally Verified Resource Bounds Through Implicit Computational Complexity”. In:
Companion Proceedings of the 2022 ACM SIGPLAN International Conference on Systems,
Programming, Languages, and Applications: Software for Humanity. SPLASH Companion 2022.
Association for Computing Machinery, 2022. doi: 10.1145/3563768.3565545.

Implicit Computational Complexity: From Theory to Practice Neea Rusch 31 / 31

https://doi.org/10.1007/978-3-031-24950-1_1
https://doi.org/10.4230/LIPIcs.FSCD.2022.26
https://doi.org/10.1145/3563768.3565545

	intro
	ICC
	mwp
	transformations
	current projects
	
	References

